- 快速上手:C OpenCvSharp Yolov8 人脸关键点检测工具
卢枫岱
快速上手:C#OpenCvSharpYolov8人脸关键点检测工具COpenCvSharpYolov8FaceLandmarks.rar项目地址:https://gitcode.com/open-source-toolkit/4d2a0项目介绍在当今的数字化时代,人脸识别和关键点检测技术已经成为许多应用的核心组成部分。无论是安防监控、人机交互还是虚拟现实,准确且高效的人脸关键点检测都是不可或缺的。
- Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
是Dream呀
pythonopencv开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- opencv依赖的lib名称
苏三福
opencv
#依赖的lib名称OPENCV_LIB=-lopencv_dnn-lopencv_flann-lopencv_videoio-lopencv_videostab-lopencv_superres-lopencv_video-lopencv_ml-lopencv_photo-lopencv_shape-lopencv_stitching-lopencv_calib3d-lopencv_feature
- ai照片放大python源码_AI新时代-大牛教你使用python+Opencv完成人脸解锁(附源码)...
weixin_39639505
ai照片放大python源码
好吧,伙计们,我回来了。说我拖更不写文章的可以过来用你的小拳拳狠命地捶我胸口....那么今天我们来讲关于使用python+opencv+face++来实现人脸验证及人脸解锁。代码量同样不多,你可以将这些代码运用在其它一些智能领域,如智能家居,进门的时候判断你是谁,也可以加入机器学习判断来的人是客人还是熟人。在讲之前我们会先适当的拓扑一下关于人脸识别的知识点。OK废话少说下面开始正是话题。解锁原理:
- 美图鉴赏-古风,OpenCV视频批量处理
图苑
java图像处理AIGCopencv
publicstaticvoidmixBatch(StringoutputPath,ListvideoList,intclipDuration,intnumber,intmergeDuration,ProgressCallbackcallback)throwsException{//临时裁剪文件夹StringclipTempDir=outputPath+File.separator+"_clipT
- 使用QT+OpenCV+C++完成一个简单的图像处理工具
17´
机器视觉Qtc++qtopencvc++图像处理
目录前言初始化UI界面qss样式表优化界面QImage和Mat的类型转换按钮功能实现读取图像处理图像保存图像最终效果前言本项目在QtCreator中编写,使用qmake来配置OpenCV库,具体配置方法请看这篇文章从0到机器视觉工程师(六):配置OpenCV和Qt环境-CSDN博客,UI界面使用代码的形式书写。接下来,让我们一起来完成这个项目吧。初始化UI界面代码boolMainWindow::I
- 4.opencv函数--cv2.findContours
xf8964
openCVopenCVpythonfindContours
该函数是查找图片轮廓,函数接收二值图片,函数原型cv2.findContours(image,mode,method,contours=None,hierarchy=None,offset=None)参数说明:image:原图mode:轮廓的检索模式,有四种,常用的是cv2.RETR_EXTERNAL枚举说明cv2.RETR_EXTERNAL表示只检测外轮廓cv2.RETR_LIST检测的轮廓不建
- OpenCV计算机视觉 08 图像的旋转
伊一大数据&人工智能学习日志
OpenCV计算机视觉人工智能计算机视觉opencv
图像的旋转下面是一张小猪佩奇的照片,请进行顺时针90度,逆时针90度,180度旋转方法一:使用了NumPy库的np.rot90()函数来实现图像的旋转np.rot90(img,k=-1)表示将输入的图像img顺时针旋转90度,np.rot90(img,k=1)表示将图像逆时针旋转90度。importcv2importnumpyasnp#导入原图img=cv2.imread('小猪佩奇.png')
- 人工智能OpenCV计算机视觉技术
yzx991013
OpenCV基础全集opencv计算机视觉人工智能
5.3cand可调节边缘检测完整代码:importcv2importnumpyasnp#载入图像,并处理可能的读取错误img_original=cv2.imread('./image/lena.jpg')ifimg_originalisNone:print("无法读取图像文件")raiseSystemExit#创建可调整大小的窗口cv2.namedWindow('Canny',cv2.WINDOW
- 在Pycharm中安装Cv2
Rverdoser
pycharmidepython
在PyCharm中安装cv2(即OpenCV库),你可以使用pip包管理器。以下是步骤和示例代码:1.打开PyCharm。2.确保你的项目解释器已经设置。在PyCharm的右下角可以看到当前使用的解释器。3.点击解释器名称(通常是解释器路径的一部分),然后选择"ShowAll"。4.在弹出的解释器列表中,选择你想要安装cv2的解释器。5.点击加号按钮(或者"+"按钮),然后选择"InstallPa
- 基于深度学习CNN网络 mini-xception网络实现 构建一个完整的人脸表情检测_识别分类系统,包括训练、评估、前端和服务端代码
计算机c9硕士算法工程师
卷积神经网络深度学习cnn分类
人脸表情检测该项目已训练好网络模型,配置好环境即可运行使用,效果见图像,实现图像识别、摄像头识别、摄像头识别/识别分类项目-说明文档-UI界面-cnn网络项目基本介绍:【网络】深度学习CNN网络mini-xception网络【环境】python>=3.5tensorflow2opencvpyqt5【文件】训练预测全部源代码、训练好的模型、fer2013数据集、程序算法讲解文档【类别】对7种表情检测
- emgu.cv读取1080p视频
zhangxiaomm
音视频
以前一直是用c++的opencv读取视频,最近的项目改用emgu.cv读取视频,摄像头为顺华利1080p的小探测器。这个小摄像头直接获取帧频是60,最大分辨率是1920*1080遇到的几个问题记录如下:1直接读取默认图像为640*480.读取视频采用cap=newCapture(0);可以读取计算机自带的摄像头,外置的1080p摄像头id号为1,直接采用cap=newCapture(1);读取,读
- Emgu.CV 报错 Emgu.CV.Util.CvException: OpenCV
Echo_Wish
C#笔记OpenCVopencv计算机视觉人工智能
Emgu.CV报错Emgu.CV.Util.CvException:OpenCV异常信息:Emgu.CV.Util.CvException:OpenCV:在Emgu.CV.CvInvoke.CvErrorHandler(Int32status,IntPtrfuncName,IntPtrerrMsg,IntPtrfileName,Int32line,IntPtruserData)在Emgu.CV.C
- OpenCV03-高级-滤波与增强
坐吃山猪
OpenCVopencv计算机视觉人工智能
OpenCV03-高级-滤波与增强文章目录OpenCV03-高级-滤波与增强1-OpenCV平滑滤波1.均值滤波(`cv2.blur()`)2.高斯滤波(`cv2.GaussianBlur()`)3.中值滤波(`cv2.medianBlur()`)4.双边滤波(`cv2.bilateralFilter()`)总结2-OpenCV边缘检测1.Sobel算子(`cv2.Sobel()`)2.Canny
- Kotlin Bytedeco OpenCV 图像图像55 图像透视变换
深色風信子
kotlinopencv透视变换bytedeco
KotlinBytedecoOpenCV图像图像53图像透视变换1添加依赖2测试代码3测试结果1添加依赖4.0.0com.xuKotlinOpenCV1.02.0.0UTF-8official1.8mavenCentralhttps://repo1.maven.org/maven2/cn.hutoolhutool-all5.8.29org.apache.commonscommons-compres
- OpenCV基础学习
yzx991013
OpenCV基础全集学习
5.1开运算完整代码:importcv2importnumpyasnpdefcir():try:image=cv2.imread("./image/xingtai/cirrec.jpg")kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))src=cv2.morphologyEx(image,cv2.MORPH_OPEN,kerne
- OpenCV实例应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
5.0图像的腐蚀应用完整代码:importcv2importnumpyasnpdeferode():img=cv2.imread('./image/dige.png')kernel=np.ones((3,3),np.uint8)erosion=cv2.erode(img,kernel,iterations=1)erosion1=cv2.erode(img,kernel,iterations=2)r
- opencv图像基础学习
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
2.3图像的加密解密源码如下:importcv2importnumpyasnpimportmatplotlib.pyplotaspltdefpassImg():img=cv2.imread('./image/cat.jpg',0)h,w=img.shape#生成一个密码,加密key_img=np.random.randint(0,256,size=(h,w),dtype=np.uint8)img_
- 【OpenCV入门学习--python】绘图函数
喜欢星星的田螺姑娘
OpenCVopencvpython学习
源代码:(查看教材《OpenCV-Python中文教程》段力辉译)importnumpyasnpimportcv2#Createablackimageimg=np.zeros((512,512,3),np.uint8)#将所有像素点的各通道数值赋0#其中“3”是三个通道的意思#np.zeros函数用于创建一个数值全为0的矩阵,np.ones用于创建一个数值全为1的矩阵#Drawadiagonalb
- opencv基础学习
yzx991013
OpenCV基础全集opencv学习人工智能
3.3OTSU阈值代码:importcv2importnumpyasnpfrommatplotlibimportpyplotaspltimg=cv2.imread('./image/otus.png',0)#简单阈值ret1,th1=cv2.threshold(img,127,255,cv2.THRESH_BINARY)#二值化阈值ret2,th2=cv2.threshold(img,0,255,
- OpenCV阈值
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
3.1阈值代码:importcv2frommatplotlibimportpyplotasplt#读取图像img1=cv2.imread("./image/card10.png")#检查图像是否成功加载ifimg1isNone:print("Error:Imagenotfoundorunabletoread.")exit()#转换为灰度图gray=cv2.cvtColor(img1,cv2.COL
- 昇腾NPU推理YOLOV10目标检测(C++)
weixin_51923349
c++ffmpegopencv
1.准备工作基础环境:需要安装NPU固件驱动,CANN的包在昇腾官网下载,安装最新版就可以了。C++环境搭建链接:cplusplus/environment/catenation_environmental_guidance_CN.md·Ascend/samples-Gitee.com按照上面的链接,需要安装:presentagent,opencv,ffmpeg+acllite其中ffmpeg和o
- Qt制作一个ListView列表
Qt开发老杰
qt开发语言
一、概述案例:使用Qt制作一个ListView。点击ListView的Item可以用于测试OpenCV的各种效果自定义一个:MainListView继承QListWidget、MainListViewItem继承QListWidgetItem二、代码示例1.自定义QListWidgetmainlistview.hclassMainListView:publicQListWidget{Q_OBJEC
- 如何利用OpenCV和yolo实现人脸检测
音视频牛哥
大牛直播SDKopencv人工智能计算机视觉yolo11人脸检测opencv人脸检测yolo人脸检测
在之前的blog里面,我们有介绍OpenCV和yolo的区别,本文就人脸检测为例,分别介绍下OpenCV和yolo的实现方式。OpenCV实现人脸检测一、安装OpenCV首先确保你已经安装了OpenCV库。可以通过以下方式安装:使用包管理工具安装:在Python环境中,可以使用pip安装:pipinstallopencv-python。二、加载预训练的人脸检测模型OpenCV提供了基于Haar特征
- opencv-python安装失败的解决方法之一
格格衫穿七天
opencvpython人工智能
问题描述:1.pip下载opencv-python无论使用哪个镜像网站都找不到3.4.1.15版本;2.xxx.whl文件下载后用pipinstall“路径”导入失败;3.pip下载以及直接下载xxx.whl都十分慢;解决方法:不要改安装的位置!此时我们需要安装opencv-contrib-python(version为3.4.1.15,和opencv-python保持一致)注意安装时所在的位置,
- SpringBoot一键提取身份证与营业执照信息
一名技术极客
#java相关工具类springboot后端java
SpringBoot一键提取身份证与营业执照信息使用的工具和库步骤和代码示例添加依赖图像预处理和文字识别信息提取使用OpenCV对图像进行预处理OpenCV图像预处理示例集成到OCR服务中在SpringBoot中实现图片中的身份证号、营业执照等信息的识别,可以分为以下几个步骤:图像预处理:为了提高识别的准确性,首先对图片进行预处理,如调整大小、对比度、亮度等。文字检测:使用图像处理算法或框架来定位
- 开源人工智能模型框架:探索与实践
CodeJourney.
人工智能能源
摘要本文深入探讨了开源人工智能模型框架,旨在为研究人员、开发者及相关从业者提供全面的理解与参考。通过对多个主流开源框架,如TensorFlow、PyTorch、Keras、Detectron2、OpenCV、HuggingFaceTransformers、AllenNLP、MindSpore和Fastai的详细分析,阐述其特点、应用场景、优势与不足,并结合具体示例说明其使用方法,同时配以相关架构图
- Python基于YOLOv8和OpenCV实现车道线和车辆检测
old_power
计算机视觉YOLOopencv计算机视觉python
使用YOLOv8(YouOnlyLookOnce)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。1、系统主要功能车道检测:使用边缘检测和霍夫线变换检测道路车道。汽车检测:使用YOLOv8模型识别汽车并在汽车周围绘制边界框。距离估计:使用边界框大小计算检测到的汽车与摄像头的距离。2、环境
- OpenCV相机标定与3D重建(59)用于立体相机标定的函数stereoCalibrate()的使用
jndingxin
OpenCV3dopencv
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述标定立体相机设置。此函数找到两个相机各自的内参以及两个相机之间的外参。cv::stereoCalibrate是OpenCV中用于立体相机标定的函数。它通过一组已知的3D点及其在两个相机中的对应2D投影,来估计两个相机之间的相对位置和方向(旋转矩阵R和平移向量T),
- OpenCV相机标定与3D重建(54)解决透视 n 点问题(Perspective-n-Point, PnP)函数solvePnP()的使用
jndingxin
OpenCVopencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述根据3D-2D点对应关系找到物体的姿态。cv::solvePnP是OpenCV库中的一个函数,用于解决透视n点问题(Perspective-n-Point,PnP),即通过已知的3D点及其对应的2D图像点来估计物体的姿态(旋转和平移)。这个函数可以处理任意数量的点
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号