- QLoRa使用教程
云帆@
训练peft人工智能
一、定义定义案例1二、实现定义QLoRa:量化+LoRa.网址:https://huggingface.co/docs/peft/main/en/developer_guides/quantization案例11.4bit量化+LoRaimporttorchfromtransformersimportBitsAndBytesConfigconfig=BitsAndBytesConfig(load_
- 力扣SQL仅数据库(1068~1084)
朵&朵
数据库sqlmysql
1068.产品销售分析1需求编写解决方案,以获取Sales表中所有sale_id对应的product_name以及该产品的所有year和price。输入:Sales表:+---------+------------+------+----------+-------+|sale_id|product_id|year|quantity|price|+---------+------------+--
- 《重构:改善既有代码的设计》-学习笔记二(+实战解析
2401_86367399
面试辅导大厂内推重构学习笔记
returnfinalPrice;}privatedoublediscountedPrice(intdiscountLevel){if(discountLevel==2)returngetBasePrice()*0.1;elsereturngetBasePrice()*0.05;}privateintgetBasePrice(){return_quantity*_itemPrice;}优化1,2,
- TensorRT模型量化实践
痛&快乐着
深度学习TensorRTc++深度学习
文章目录量化基本概念量化的方法方式1:trtexec(PTQ的一种)方式2:PTQ2.1pythononnx转trt2.2polygraphy工具:应该是对2.1量化过程的封装方式3:QAT(追求精度时推荐)使用TensorRT量化实践(C++版)使用TensorRT量化(python版)参考文献量化基本概念后训练量化PostTrainingQuantization(PTQ)量化过程仅仅通过离线推
- 股票中的情侣——配对交易
鸿鹄Max
什么是配对交易?配对交易(PairsTrading)是指八十年代中期华尔街著名投行MorganStanley的数量交易员NunzioTartaglia成立的一个数量分析团队提出的一种市场中性投资策略,,其成员主要是物理学家、数学家、以及计算机学家。GanapathyVidyamurthy在《PairsTrading:QuantitativeMethodsandAnalysis》一书中定义配对交易为
- 地平线旭日x3派部署yolov8
巴啦啦魔仙变!!
YOLOpython数学建模
地平线旭日x3派部署yolov8总体流程1.导出onnx模型导出YOLOV8_onnxruntime.py验证onnxutils.py2.在开发机转为bin模型2.1准备数据图片2.2转换必备的yaml文件2.3开始转换3.开发机验证**quantized_model.onnx4.板子运行bin模型资源链接总体流程1.导出onnx模型导出使用yolov8的github库导出onnx模型。注意设置o
- ClickHouse 分布式部署、分布式表创建及数据迁移指南
努力做一名技术
clickhouse分布式
文章目录部署ClickHouse集群1.1环境准备1.2安装ClickHouse1.3配置集群创建分布式表2.1创建本地表2.2创建分布式表2.3删除分布式表测试分布式表3.1插入测试数据。配置和管理4.1配置监控4.2数据备份数据迁移5.1导出5.2导入部署ClickHouse集群QuantumInsights的部署将基于一个高可用的分布式ClickHouse集群,以实现对大规模数据的高效处理和
- 电转染实验,如何设置siRNA实验对照组?
实验小助手
1.设置空白对照组,检验细胞生长状态。2.设置阴性对照组,无血清培养基+Entranster-E电转染试剂+阴性siRNA。3.设置阳性对照组,无血清培养基+Entranster-E电转染试剂+靶向siRNA转染管家基因,比如GAPDH或者LaminA/C,之后通过westernblotting或者mRNAquantification检测基因的表达。如需了解更多关于电转染试剂的信息,请咨询英格恩生
- salmon分析RNA-seq实战
超级无敌大蜗牛
Salmon应用查看帮助文档#查看可用的命令###Salmonv0.9.1salmon-h#查看帮助文档之Salmon'squasi-mapping-basedmodesalmon--no-version-checkquant--help-reads#查看帮助文档之Salmon'salignment-basedmodesalmon--no-version-checkquant--help-alig
- 没错 !python杀死了excel!为何python这么火,咱们来说一下!
IT领域君
月前,日本最大的证券公司之一野村证券首席数字官马修·汉普森,在QuantConference上发表讲话:“用Excel的人越来越少,大家都在码Python代码。”甚至直接说:“Python已经取代了Excel。”事实上,为了追求更高的效率和质量,他们开始使用比Excel更高效的Python,随后交易收入增长了15%。而Python的应用领域极为广泛,尤其是在数据分析领域,与SQL数据库、统计数学、
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 基于示例详细讲解模型PTQ量化的步骤(含代码)
LQS2020
卷积神经网络python
详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-TrainingQuantization,训练后量化)的全过程。1.模型训练我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。2.收集统计信息在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。收集权重和激活的统
- Piquant boys and Funning girls
CC波罗蜜
"Becareful","Firmlygrasp","Lookout",inmygymnasticclass,Ineedtosaythosewordsmanytimes,becausetheyaretooactivity.Inthefirstclass,Ispeakedthatgymnasticwasafunnysport,whileithaddifficutactions,eventhoughy
- 【大模型】大模型 CPU 推理之 llama.cpp
szZack
大语言模型人工智能大模型人工智能llama.cpp
【大模型】大模型CPU推理之llama.cppllama.cpp安装llama.cppMemory/DiskRequirementsQuantization测试推理下载模型测试参考llama.cpp描述Themaingoalofllama.cppistoenableLLMinferencewithminimalsetupandstate-of-the-artperformanceonawideva
- Grouping Sets语句知识讲解
王二空间
数据结构算法sql
前言SQL中GroupBy语句大家都很熟悉,根据指定的规则对数据进行分组,常常和聚合函数一起使用。比如,考虑有表dealer,表中数据如下:id(Int)city(String)car_model(String)quantity(Int)100FremontHondaCivic10100FremontHondaAccord15100FremontHondaCRV7200DublinHondaCiv
- 【金融数据接口】choice数据python使用教程
hutaotaotao
finance金融python数据分析
目录(0)是否收费(1)sdk包下载、激活与使用说明1.下载安装包2.安装与激活(3)python使用demo(0)是否收费(是)像wind一样,会收费。(1)sdk包下载、激活与使用说明1.下载安装包下载地址:Choice数据量化接口-下载中心这里我们下载python版本的压缩包EmQuantAPI_Python.zip,下载完成后解压。解压后的文件情况如下:其中文件夹python3下的文件情况
- A brief review of probability theory
世界上的一道风
AbriefreviewofprobabilitytheoryFundamentalrulesproductrule:yieldchainrule:sumrule:Bayesrule:Quantiles(分位数)cdf是,逆函数是,分位数的作用是,有,表示的意思是。也就是说,是一个概率值,代入累积分布的逆函数中,返回的是对应概率面积的截断点:根据公式测试:importnumpyasnpimport
- chatGLM-6B部署报错quantization_kernels_parallel.so‘ (or one of its dependencies). Try using the full pat
FL1623863129
环境配置深度学习
用python部署chatglm2时候报错:FileNotFoundError:Couldnotfindmodule'C:\Users\Administrator\.cache\huggingface\modules\transformers_modules\chatglm2-6b-int4\quantization_kernels_parallel.so'(oroneofitsdependenc
- 神经网络量化
小厂程序猿
人工智能
神经网络量化(NeuralNetworkQuantization)是一种技术,旨在减少神经网络模型的计算和存储资源需求,同时保持其性能。在深度学习中,神经网络模型通常使用高精度的参数(例如32位浮点数)来表示权重和激活值。然而,这种表示方式可能会占用大量的内存和计算资源,特别是在部署到资源受限的设备(如移动设备或嵌入式系统)时会受到限制。神经网络量化通过将模型参数和激活值从高精度表示(例如32位浮
- vim搜索和替换
ketaotech
vimvimchrome编辑器
目录正则表达式1.特殊字符2.字符类(character-classes)3.规则4.交替和分组5.量词(quantifier)和重数(multi)贪婪模式(greedy)非贪婪模式(non-greedy)6.魔法(magic)详解6.1.基本魔法(magic)6.2.无魔法(nomagic)6.3.深度魔法(verymagic)7.正则表达式举例7.1.精确匹配单词7.2.变量,方法或类的重命名
- 【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用
prince_zxill
Python实战教程人工智能与机器学习教程pytorch人工智能python
【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用模型优化和加速:PyTorch优化技术与库的应用模型剪枝(ModelPruning)模型量化(ModelQuantization)混合精度训练(MixedPrecisionTraining)总结模型优化和加速:PyTorch优化技术与库的应用在机器学习和深度学习领域,模型的性能和效率一直是研究和应用的重要关注点。随着模型越来
- 第三章 基础数据和技术指标 | 波动率计算
阿岛格
人工智能.量化投资深度学习神经网络数据挖掘机器学习
三、波动率计算波动率计算历史波动率:自行采用不同算法,包括c2c、parkinson、garmanklass、rsy、yz隐含波动率:自行采用QuantLib/Mibian计算实时隐含波动率波动率VIX(恐慌指数):自行编码模块实时计算VIX指数(分钟/日级别)#计算历史某一天的iVIX#Basedonhttp://www.cboe.com/micro/vix/vixwhite.pdfdefcal
- 使用 Quantumult X 破解Emby for ios 客户端
Emby(原名MediaBrowser)是一个主从式架构的媒体服务器软件,可以用来整理服务器上的视频和音频,并将音频和视频流式传输到客户端设备。此教程主要讲述如何使用QuantumultX破除Emby使用限制.信任证书根据如图步骤,信任生成的证书信任证书添加重写规则进入“编辑”编辑重写规则在[rewrite_remote]下添加以下信息并保存https://raw.githubuserconten
- 量化宽松真的就是印钞票吗
Britneyyy
QE量化宽松是什么?量化宽松(QuantitativeEasing,简称QE),并不是所谓的印很多的钱,也不是派钱。而是一种非传统的货币政策,是中央银行在金融市场上买卖政府债券,来控制货币供给和利率的政策行为。政府债券是政府为筹集资金而向投资者出具并承诺在一定时期支付利息并偿还本金的凭证。那么,当经济不景气时,中央银行会变身买家从商业银行买入大量政府债券,那么商业银行就会瞬间多了很多资金,市场供应
- 机器学习实战1-基础运用(2022/10/11)
点灯的棉羊
机器学习Jupyter笔记机器学习pythonnumpy
机器学习实战1-基础运用文章目录机器学习实战1-基础运用numpy的简单运用生成矩阵和矩阵的简单操作用pandas库读取、保存csv数据文件read_csv()函数及读入的数据处理to_csv()保存数据matplotlib.pyplot库绘图的使用条形图的绘制箱型图的绘制分位数(Quantile)分位点/四分位数分位数与箱型图`boxplot()`函数绘制交叉报表热力图plt绘图基础import
- R语言实战第5章:高级数据管理
亚航
本章内容数字和统计函数字符处理函数循环和条件执行自编函数数据整合与重塑5.1一个数据处理难题题目详见R语言实战第一版第86页(需要的同学,公众号私信:R语言实战。小编会发连接)5.2数值和字符处理函数数值函数(数学、统计、概率)字符处理函数5.2.1数学函数略5.2.2统计函数函数描述mean(x)平均数median(x)中位数sd(x)标准差var(x)方差mad(x)绝对中位差quantile
- DAX从入门到精通 3-3-1 使用表表达式
PowerBI入门到实践
使用表表达式本章的开头,你可以看到,我们通常会使用表表达式作为DAX的参数。典型的使用方法是在函数中迭代一个表,对表中的每个行进行计算。例如,下面的sumx,所有其他以x为结尾的聚合函数都是这样的模式:[SalesAmount]:=SUMX(Sales,Sales[Quantity]*Sales[UnitPrice])可以用表函数来替代sales表,例如,可以使用filer来筛选销售数量大于1的记
- Memory Wall in Neural Network Inference
简vae
软硬件结合PIMforAIgpu算力cnnlstmtransformer
MemoryWallinNeuralNetworkInference神经网络推理的瓶颈在于访存带宽,通常无法发挥出加速器的全部算力。本文总结了目前常用的推理加速器及其设计,并分析了常用神经网络的访存瓶颈。文章大部分内容参考自ComputerArchitecture:AQuantitativeApproach。1Computecentricaccelerators1.1CPU一般来说,CPU擅长于做
- Quantitative Analysis: PIM Chip Demands for LLAMA-7B inference
简vae
软硬件结合neardataprocessingPIMforAIllamatransformer
1Architecture如果将LLAMA-7B模型参数量化为4bit,则存储模型参数需要3.3GB。那么,至少PIMchip的存储至少要4GB。AiM单个bank为32MB,单个die512MB,至少需要8个die的芯片。8个die集成在一个芯片上。提供8×16bank级别的访存带宽。整个推理过程完全下放至PIM。CPU把prompt传给ControllerController控制推理过程,将推
- 23年你可能错过的 10个 前端新变化
程序员
2023年前端圈中迎来了很多新的变化,快来回顾一下吧1.可迭代对象groupby使用groupby很容易对可迭代对象进行分组,例如下面的数组示例数据constarr=[{name:"芦笋",type:"蔬菜",quantity:5},{name:"香蕉",type:"水果",quantity:0},{name:"山羊",type:"肉",quantity:23},{name:"樱桃",type:"
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f