codeforces 721C. Journey(dp+拓扑)

C. Journey
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Recently Irina arrived to one of the most famous cities of Berland — the Berlatov city. There are n showplaces in the city, numbered from1 to n, and some of them are connected by one-directional roads. The roads in Berlatov are designed in a way such that there are nocyclic routes between showplaces.

Initially Irina stands at the showplace 1, and the endpoint of her journey is the showplace n. Naturally, Irina wants to visit as much showplaces as she can during her journey. However, Irina's stay in Berlatov is limited and she can't be there for more than T time units.

Help Irina determine how many showplaces she may visit during her journey from showplace 1 to showplace n within a time not exceeding T. It is guaranteed that there is at least one route from showplace 1 to showplace n such that Irina will spend no more than Ttime units passing it.

Input

The first line of the input contains three integers n, m and T (2 ≤ n ≤ 5000,  1 ≤ m ≤ 5000,  1 ≤ T ≤ 109) — the number of showplaces, the number of roads between them and the time of Irina's stay in Berlatov respectively.

The next m lines describes roads in Berlatov. i-th of them contains 3 integers ui, vi, ti (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ ti ≤ 109), meaning that there is a road starting from showplace ui and leading to showplace vi, and Irina spends ti time units to pass it. It is guaranteed that the roads do not form cyclic routes.

It is guaranteed, that there is at most one road between each pair of showplaces.

Output

Print the single integer k (2 ≤ k ≤ n) — the maximum number of showplaces that Irina can visit during her journey from showplace 1 to showplace n within time not exceeding T, in the first line.

Print k distinct integers in the second line — indices of showplaces that Irina will visit on her route, in the order of encountering them.

If there are multiple answers, print any of them.

Examples
input
4 3 13
1 2 5
2 3 7
2 4 8
output
3
1 2 4 
input
6 6 7
1 2 2
1 3 3
3 6 3
2 4 2
4 6 2
6 5 1
output
4
1 2 4 6 
input
5 5 6
1 3 3
3 5 3
1 2 2
2 4 3
4 5 2
output
3
1 3 5 
题意:

n个点m条单向边组成一张图,问从1走到n花费时间不超过T最多能经过多少个城市。

思路:

一开始我用最短路做,用cnt[x]表示到达x经过的城市,用dis[x]表示到达x经过cnt[x]个城市时所需要的最短时间,结果在更新的时候出错了。

正确做法是dp+拓扑,用tim[x][y]表示到达城市x经过y个城市的最少时间,用nxt[x][y]表示x的上一个城市

#include 
using namespace std;
const int N=1e5+10;

const int MAXN=5010; 
const int INF=0x3f3f3f3f; 
struct node 
{  
	int v, cost;
	node(int vi=0,int ci=0):v(vi),cost(ci) {} 
}; 
vectorvec[MAXN], vv[MAXN]; 
void addedge(int u,int v,int w) 
{  
	vec[u].push_back(node(v,w)); 
} 
int du[MAXN], nxt[MAXN][MAXN], tim[MAXN][MAXN];
queueq;

void solve(int s, int e, int lim){
	while(!q.empty()) q.pop();
	memset(nxt, 0, sizeof(nxt));
	memset(tim, 0x3f3f3f3f, sizeof(tim));
	
	for(int i=s; i<=e; i++){
		if(!du[i]) q.push(i);
	}	
	
	for(int i=0; i<=e; i++) tim[1][i] = 0;
	while(!q.empty()){
		int top = q.front();q.pop();
		int len = (int)vec[top].size();
		if(top == 1){
			for(int i=0; i lim) continue;
				if(tim[top][j-1] + w >= tim[v][j]) continue;
				tim[v][j] = tim[top][j-1] + w;
				nxt[v][j] = top;
			}
			du[v]--;
			if(!du[v]) q.push(v);
		}
	}
}

int arr[MAXN];

int main(){
	int n, m, T;
	scanf("%d%d%d", &n, &m, &T);
	int u, v, w;
	memset(du, 0, sizeof(du));
	for(int i=0; i=0; i--){
		if(i == 0) printf("%d\n", arr[i]);
		else printf("%d ", arr[i]);
	}
	return 0;
}






你可能感兴趣的:(普通dp,拓扑排序,CodeForces)