题意:确定几个点不割,问最少割几个点使确定的点不能到达T
拆点,每个点 i i i分成 i i i和 i + n i+n i+n
#include
using namespace std;
#define rep(i,a,n) for (int i=a;i
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
const int maxn = 1e4+100;
const int maxm = 1e5+100;
const int inf = 0x7f7f7f7f;
typedef struct Dinic
{
typedef struct Edge
{
int u,v,w,nxt;
} Edge;
int head[maxn],hcnt;
int dep[maxn];
int cur[maxn];
Edge e[maxm];
int S,T,N;
void init()
{
memset(head,-1,sizeof head);
hcnt = 0;
S = T = N = 0;
}
void adde(int u,int v,int w)
{
e[hcnt].u = u,e[hcnt].v = v,e[hcnt].w = w;
e[hcnt].nxt = head[u];head[u] = hcnt++;
e[hcnt].u = v,e[hcnt].v = u,e[hcnt].w = 0;
e[hcnt].nxt = head[v];head[v] = hcnt++;
}
int bfs()
{
rep(i,0,N)
{
dep[i] = inf;
}
queue<int> q;
q.push(S); dep[S] = 0;
while(!q.empty())
{
int u = q.front();q.pop();
for(int i = head[u];~i;i = e[i].nxt)
{
int v = e[i].v,w = e[i].w;
if(w > 0 && dep[u] + 1 < dep[v])
{
dep[v] = dep[u] + 1;
if(v == T)
{
return 1;
}
q.emplace(v);
}
}
}
return dep[T] != inf;
}
int dfs(int s,int mw)
{
if(s == T) return mw;
for(int i = cur[s];~i;i=e[i].nxt)
{
cur[s] = i;
int v = e[i].v,w=e[i].w;
if(w <= 0 || dep[v] != dep[s] + 1)
{
continue;
}
int cw = dfs(v,min(w,mw));
if(cw <= 0)
continue;
e[i].w -= cw;
e[i^1].w += cw;
return cw;
}
return 0;
}
ll dinic()
{
ll res = 0;
while(bfs())
{
rep(i,0,N)
{
cur[i] = head[i];
}
while(int d = dfs(S,inf))
{
res += 1ll * d;
}
}
return res;
}
} Dinic;
int n,m,s;
int vis[maxn];
int main(int argc, char const *argv[])
{
while(scanf("%d%d%d",&n,&m,&s)!=EOF)
{
memset(vis,0,sizeof vis);
Dinic din; din.init();
din.S = 0,din.T = 1,din.N = 2*n+10;
int x,y;
rep(i,0,m)
{
scanf("%d%d",&x,&y);
din.adde(x+n,y,inf);
din.adde(y+n,x,inf);
}
rep(i,0,s)
{
scanf("%d",&x);
vis[x] = 1;
din.adde(x,x+n,inf);
din.adde(0,x,inf);
}
rep(i,1,n+1)
{
//din.adde(i+n,2*n+1,inf);
if(vis[i] == 0)
din.adde(i,i+n,1);
}
printf("%lld\n",din.dinic());
}
return 0;
}