题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734
注意到F(x)的值比较小,所以可以先预处理所有F(x)的组合个数。f[i][j]表示 i 位数时F(x)为 j 的个数,方程容易转移:f[i][1<<i+j]=sigma( f[i][j] )。然后求一下f[i][j]的前缀和,就可以直接统计了。。
1 //STATUS:C++_AC_31MS_684KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=10010; 37 const int INF=0x3f3f3f3f; 38 const int MOD=100000,STA=8000010; 39 const LL LNF=1LL<<60; 40 const double EPS=1e-8; 41 const double OO=1e15; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 int f[11][N]; 59 int T,n,m; 60 61 int getfa(int a) 62 { 63 int i,ret=0; 64 for(i=0;a;i++,a/=10) 65 ret+=(a%10)*(1<<i); 66 return ret; 67 } 68 69 int solve() 70 { 71 int i,j,k,acc=0,fa,len,t,ret=0; 72 int num[13]; 73 for(len=0,t=m;t;t/=10)num[++len]=t%10; 74 fa=getfa(n); 75 for(i=len;i>=1;i--){ 76 for(j=0;j<num[i];j++){ 77 if(fa-acc-j*(1<<(i-1))>=0)ret+=f[i-1][fa-acc-j*(1<<(i-1))]; 78 } 79 acc+=j*(1<<(i-1)); 80 } 81 if(acc<=fa)ret++; 82 return ret; 83 } 84 85 int main(){ 86 // freopen("in.txt","r",stdin); 87 int i,j,k,t,ca=1; 88 f[0][0]=1; 89 for(i=1;i<=10;i++){ 90 for(j=0;j<10;j++){ 91 t=j*(1<<(i-1)); 92 for(k=0;t+k<N;k++) 93 f[i][t+k]+=f[i-1][k]; 94 } 95 } 96 for(i=0;i<=10;i++) 97 for(j=1;j<N;j++)f[i][j]+=f[i][j-1]; 98 scanf("%d",&T); 99 while(T--) 100 { 101 scanf("%d%d",&n,&m); 102 printf("Case #%d: %d\n",ca++,solve()); 103 } 104 return 0; 105 }