- DiNO (Knowledge Distillation with No Labels)(二)
CL.LIANG
pytorch图像处理深度学习
2021年Facebookresearch团队发布DiNO模型后,于2023年又发布了DiNOv2。本文是对DiNOv2论文的学习总结,更多详细细节可以参考论文原稿。论文的创新点Abstract:Therecentbreakthroughsinnaturallanguageprocessingformodelpretrainingonlargequantitiesofdatahaveopenedt
- 【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
IT古董
人工智能深度学习机器学习深度学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种深度学习模型框架,由IanGoodfellow等人在2014年提出。GAN由生成器(Generator)和判别器(Discriminator)两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN在图像生成、文本生成、数据增强等领域中有广泛应用。核心思想GAN的核心是两个神经
- Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
- Windows10环境下使用docker部署Dify
南南的sky
容器运维AIGC
前言最近带教导师让使用dify做一些工程项目,我在此之前没用过dify,也不知道怎么部署,便花了些时间研究了一下,这篇博客的主要目的是记录如何在windows10系统上使用docker部署dify,碰到了哪些问题以及解决方案。什么是DifyDify是一款开源的大语言模型(LLM)应用开发平台。它融合了后端即服务(BackendasService)和LLMOps的理念,使开发者可以快速搭建生产级的生
- 如何应对访问国外服务器缓慢的问题?SDWAN组网是性价比之选
蓝讯小刘
服务器运维
在全球化日益加深的今天,企业经常需要访问国外的服务器以进行远程办公、跨国业务处理、数据传输和视频会议等。然而,不少企业在使用中遇到了访问速度缓慢的问题。本文将介绍几种有效的解决方案,帮助提高访问效率。首先,我们来分析一下访问缓慢的原因:1.政策限制:为了维护国家网络的安全与稳定,我国对部分国外网站和服务器有一定的访问限制。2.技术障碍:国内与国际互联网的网络架构和协议存在差异,这可能导致数据传输不
- 使用Dify搭建企业知识库聊天机器人
大模型产品经理
机器人人工智能语言模型算法自然语言处理面试
本文简介在当今数字化时代,企业知识库的建设和维护对于提升工作效率和服务质量至关重要。AI聊天机器人作为知识库的交互界面,可以提供24/7的即时服务。本文将介绍如何使用Dify这一工具快速搭建企业知识库聊天机器人,它可以当你企业的职能客服,也可以做你企业内部培训的老师。相比起传统的“智能客服”,加入大语言模型后的AI客服能更清楚用户想问什么问题,在匹配你提供的知识库的内容进行回答,这样看上去会更懂用
- LogicFlow 一款流程图编辑框架
小毛驴850
流程图
LogicFlow是什么LogicFlow是一款流程图编辑框架,提供了一系列流程图交互、编辑所必需的功能和灵活的节点自定义、插件等拓展机制。LogicFlow支持前端自定义开发各种逻辑编排场景,如流程图、ER图、BPMN流程等。在工作审批流配置、机器人逻辑编排、无代码平台流程配置都有较好的应用。官方网站更多资料请查看LogicFlow系列文章特性可视化模型:通过LogicFlow提供的直观可视化界
- 【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
IT古董
人工智能深度学习机器学习深度学习cnn人工智能
卷积神经网络(CNN)概念简介卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。关键组成部分卷积层(ConvolutionalLayer)使用卷积核(滤波器)在输入上滑动,提取局部特征。
- 大模型应用编排工具Dify之自定义工具
Daphnis_z
LLMJava开发chatgptspringbootaijava
1.前言dify中提供了自定义工具的能力,工具十分容易复用,在需要的流程编排中进行引用即可。根据笔者的经验和理解,自定义工具有点类似微服务,可以把通用的能力封装到工具里面。同时,工具还提供了测试和鉴权等功能,对开发者比较友好。环境信息:dify-0.8.3,spring-boot-2.7.6实现效果如下:2.开发后台接口这里使用spring-boot快速开发一个post接口作为演示,代码如下:@R
- NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
- 航空客户价值的数据挖掘与分析(numpy+pandas+matplotlib+scikit-learn)
Want595
Python数据分析数据挖掘numpypandas
文章目录航空客户价值的数据挖掘与分析(numpy+pandas+matplotlib+scikit-learn)写在前面背景与挖掘目标1.1需求背景1.2挖掘目标1.3项目概述项目分析方法规划2.1RFM模型2.2LRFMC模型指标2.3分析总体流程图数据抽取探索及预处理3.1数据抽取3.2数据探索分析3.3数据预处理3.3.1数据清洗3.3.2属性规约3.3.3数据变换数据建模&应用4.1模型构
- [预训练语言模型专题] 百度出品ERNIE合集,问国产预训练语言模型哪家强
yang191919
朴素人工智能百度编程语言机器学习人工智能深度学习
本文为预训练语言模型专题系列第七篇系列传送门[萌芽时代]、[风起云涌]、[文本分类通用技巧]、[GPT家族]、[BERT来临]、[BE
- [E题成品文章发布]2025美赛数学建模E题35页成品论文+每小问配套py+matlab代码+完整数据集+高清可视化结果图
2025数学建模资料汇总
2025美赛数学建模E题数学建模matlab开发语言
基于生态模型的有机农业管理策略研究:除草剂移除与物种引入的生态影响分析摘要随着全球农业可持续性需求的增加,减少化学品使用并提高农业生态系统的稳定性成为关键目标。本研究基于农业生态系统中的物种互动模型,探讨了不同农业管理方式对生态系统稳定性、害虫控制和成本效益的影响。完整版获取如下地址:点击加入【2025美国大学生数学建模竞赛】:http://qm.qq.com/cgi-bin/qm/qr?_wv=
- 文本嵌入技术Text Embedding模型详解:text2vec、OpenAI ada-002到M3E及BGE-M3的演变
汀、人工智能
embeddingRAG文本嵌入词嵌入模型m3ebge
TextEmbedding模型:从text2vec、openai-textembedding到m3e、BGE1.TextEmbedding榜单:MTEB、C-MTEB1.1《MTEB:MassiveTextEmbeddingBenchmark(海量文本嵌入基准)》判断哪些文本嵌入模型效果较好,通常需要一个评估指标来进行比较,《MTEB:MassiveTextEmbeddingBenchmark(海
- YOLOV11改进1-检测头篇
~啥也不会~
YOLO人工智能目标检测神经网络深度学习
文章目录前言一、YAML修改二、模型训练1.数据集准备2.环境准备3.训练3.1原结构训练3.2更改后的模型三.效果对比1.原始结构2.修改后的结果3.详细对比总结前言 目标检测领域里,小目标一直是一个难点问题,虽然我们可以用YOLO+SAHI的方式进行滑动窗口推理以提升准确率,但是他的耗时会线性增强,毕竟一张大图会被切成很多小图去推理,所以在很多场景下无法得到应用。这里,我们从探测头入手,
- Rasa框架的优点和缺点
不会编程的程序猿ᅟ
rasa
优点1.开源和免费Rasa是开源的,无需支付许可费用,可自由下载和修改源码,适合预算有限或需要定制化解决方案的团队。企业可以完全掌控自己的对话系统,无需依赖外部服务。2.数据隐私和安全Rasa支持完全本地部署,无需将数据上传到第三方服务器,数据隐私保护性高,非常适合医疗、金融和其他注重数据安全的行业。3.高度可定制化可以根据需求修改NLU管道、策略和模型。支持自定义动作(CustomActions
- 国内的AI大模型有可能超过ChatGPT吗?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能深度学习AI写作AIGC
这是一个非常有前瞻性和现实意义的问题。要回答国内AI是否有可能超过ChatGPT,我们需要从多个方面来分析,包括技术基础、数据资源、应用场景、政策支持以及人才储备等。以下是对这一问题的详细探讨:1.技术基础(1)现状国内AI技术:国内的AI技术发展迅速,尤其在深度学习、自然语言处理(NLP)和计算机视觉等领域已经取得了显著进展。例如,百度的文心一言、阿里的通义千问等大语言模型(LLM)已经在技术上
- WGAN - 瓦萨斯坦生成对抗网络
池央
生成对抗网络人工智能神经网络
1.背景与问题生成对抗网络(GenerativeAdversarialNetworks,GANs)是由IanGoodfellow等人于2014年提出的一种深度学习模型。它包括两个主要部分:生成器(Generator)和判别器(Discriminator),两者通过对抗训练的方式,彼此不断改进,生成器的目标是生成尽可能“真实”的数据,而判别器的目标是区分生成的数据和真实数据。虽然传统GAN在多个领域
- OSI 网络模型:互联网通信的七层架构
山禾女鬼001
网络架构
在现代计算机网络中,OSI(开放系统互联)模型是一个重要的概念,它为网络通信过程提供了标准化的框架。这个模型帮助我们理解不同网络协议在通信过程中的作用,并为网络设备和系统的设计与故障排除提供了理论依据。什么是OSI模型?OSI模型(OpenSystemsInterconnectionModel,开放系统互联模型)由国际标准化组织(ISO)于1984年提出,目的是为不同厂商和不同类型的计算机网络设备
- 【大模型】AutoDL部署AI绘图大模型Stable Diffusion使用详解
小码农叔叔
AI大模型实战与应用AutoDL部署AI绘图大模型AI绘图大模型AutoDL部署SDAI绘图大模型SD使用详解SD使用详解SD部署
目录一、前言二、AI绘图大模型概述2.1AI绘图大模型介绍2.2AI绘图大模型特点2.3AI绘图大模型优势三、主流的AI绘图大模型介绍3.1Midjourney3.1.1Midjourney介绍3.1.2Midjourney功能特点3.1.3Midjourney使用场景3.2StableDiffusion3.2.1StableDiffusion介绍3.2.2StableDiffusion特点3.2
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- python广告点击率预测_常见计算广告点击率预估算法总结
weixin_39850143
python广告点击率预测
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~作者:导语:本文讨论了CTR预估模型,包括工业界使用比较广的比较经典模型和学术界最新的结合DeepLearning的一些工作。前言谈到CTR,都多多少少有些了解,尤其在互联网广告这块,简而言之,就是给某个网络服务使用者推送一个广告,该广告被点击的概率,这个问题难度简单到街边算命随口告诉你今天适不适合娶亲、适不适合搬迁一样,也可以复杂到拿到
- 广告计算学 刘鹏 听课笔记
qq415581343
广告计算笔记刘鹏
1.1广告的目的三个主体:advertisermediumaudience广告是非人员的、低成本的用户接触(reach)品牌(brank)广告vs效果(direct)广告:离线转化率vs即时转化1.2广告有效性模型三个阶段选择:曝光-广告位属性;关注-减少干扰、推荐解释、符合需求;解释:理解-用户能看懂;信息接受-认同(广告位不能只看流量,要高大上);态度:保持-艺术性带来的记忆效果;购买-价格可
- InternLM: LMDeploy 量化部署进阶实践
dilvx
机器学习
LMDeploy部署模型模型部署是将训练好的深度学习模型在特定环境中运行。欢迎使用LMDeploy,支持市面上主流的格式和算法。大模型缓存推理本章的前半部分主要讲量化,包括KV-Cache量化、权重量化、激活值量化。量化主要是为了节省存储空间,用int4,int8来重新表示fp16,将模型的显存占用控制在200G可接受的范围下。值得注意的是,在transformer架构下,计算的瓶颈主要在显存带宽
- 电商平台架构设计与微服务部署
Go小鸟编程
微服务电商golang后端架构云原生
电商业务模型分析电商业务是一个涵盖广泛、交互复杂的系统,涉及用户浏览商品、下单购物、支付、订单处理、物流配送等多个环节。从业务的角度进行拆解可以更好地理解和组织各个方面的功能。以下是对电商业务场景、业务模型和工作链路的拆解。买家视角电商系统的本质是促进商品和服务的在线买卖,面向买家用户的工作流是电商系统的核心卖家视角从商家的视角,电商系统的一般工作流程涉及商品管理、订单处理、售后服务等多个环节:平
- Pytorch实现论文:对GAN的交替优化
LJ1147517021
GAN系列生成对抗网络计算机视觉人工智能pytorch机器学习深度学习
简介这次带来的是ClosingtheGapBetweenTheoryandPracticeDuringAlternatingOptimizationforGANs,Gans交替优化中缩小理论与实践的差距这篇论文的一个核心代码在ACGAN模型上的效果测试,核心是修改了损失函数部分的计算。作者的实验是在StyleGAN上进行的。论文简介论文题目:ClosingtheGapBetweenTheoryan
- 2023美赛数学建模C题思路复盘,备战24美赛!
喜欢一个人_
大数据人工智能数学建模
目录2024美赛数学建模各题思路模型代码:开赛后第一时间更新,更新见文末一、2023题目重述拟解决的问题我们的工作:二、模型和计算1.数据预处理2.报告数量区间预测模型3.猜词结果分布预测模型3.词汇难度分类模型2024美赛数学建模各题思路模型代码:开赛后第一时间更新,更新见文末一、2023题目重述Homer是棒球运动中的术语,是非正式的美式英语单词。令人惊讶的是,Homer(本垒打)在剑桥词典网
- 全场景深度思考模型发布:囊括三大推理能力,解锁医疗循证模式
量子位
1月24日,百川智能发布了国内首个全场景深度思考模型Baichuan-M1-preview。该模型是国内目前唯一同时具备语言、视觉和搜索三大领域推理能力的模型。在数学、代码等多个权威评测中,Baichuan-M1-preview的表现均超越了o1-preview,展现了其在多领域推理方面的独特优势。此外,作为国内唯一专注医疗领域的头部大模型公司推出的深度思考模型,它还解锁了医疗循证模式,实现了从医
- 《数据孤岛:AI模型训练之殇,精度与泛化的双重困境》
人工智能深度学习
在人工智能飞速发展的当下,数据就是模型的“燃料”。从医疗影像诊断到智能交通调度,从电商推荐系统到金融风险预测,AI模型的精准度与泛化能力,决定了其在实际应用中的价值。然而,一个棘手的问题正阻碍着AI前行的步伐——数据孤岛。数据孤岛,是指在组织内部或不同组织之间,由于系统、管理或流程的原因,数据被孤立存储在不同的数据库、应用程序或部门中,彼此之间缺乏有效的连接和整合。据权威机构调研,在高度信息化的企
- 简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
周杰伦_Jay
大模型LLMs分类数据挖掘人工智能机器学习生成对抗网络transformer算法
目录前言1、大模型的定义1.1、大模型与小模型的对比2、大模型相关概念区分2.1、基础模型(FoundationModel)2.2、超大模型(Ultra-largeModel)2.3、大语言模型(LargeLanguageModel,LLM)3、大模型的发展历程3.1、萌芽期(1950-2005)3.2、探索沉淀期(2006-2019)3.3、迅猛发展期(2020-至今)4、大模型的特点5、大模型
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin