本次实验将采用定时器2的通道2产生两路频率和占空比均可调的PWM信号,然后使用定时器3的通道1来捕获其中的一路PWM波的频率和占空比。
1、首先来看下产生PWM波的程序,也就是和上篇博客是一样的,只不过换了个定时器而已:
void PWMOut_Init_Adjust_Duty_Fre(void)//输出两路频率可调、占空比可调的PWM波
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/* GPIOA and GPIOB clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 65535;//必须是这个数值65535
TIM_TimeBaseStructure.TIM_Prescaler = 71;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
/* Output Compare Toggle Mode configuration: Channel1 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;//输出比较翻转模式
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;//跳变值,也可初始化为CCR1_Val*Duty1
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable); //使能或者失能TIMx在CCR1上的预装载寄存器
/* Output Compare Toggle Mode configuration: Channel2 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR2_Val;//跳变值,也可初始化为CCR2_Val*Duty2
TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);
TIM_Cmd(TIM2,ENABLE);
TIM_ITConfig(TIM2,TIM_IT_CC2 | TIM_IT_CC3,ENABLE);
}
2、定时器2的中断服务函数:(产生PWM波)
void TIM2_IRQHandler(void)
{
if(TIM_GetITStatus(TIM2,TIM_IT_CC2) != RESET)//TIM_IT_CC1为捕获中断
{
TIM_ClearITPendingBit(TIM2,TIM_IT_CC2);
capture = TIM_GetCapture2(TIM2);//获取当前计数器中的值
if(PA6_state == 0)
{
TIM_SetCompare2(TIM2,capture + (u16)(CCR1_Val*Duty1));//注意此时的CCR1_Val是指的整个一个PWM周期内的总计数值,而在频率可调、占空比固定位50%的程序中,CCR1_Val指的是半个周期的计数值
PA6_state = 1;
}
else if(PA6_state == 1)
{
TIM_SetCompare2(TIM2,capture + (u16)(CCR1_Val*(1-Duty1)));
PA6_state = 0;
}
}
if(TIM_GetITStatus(TIM2,TIM_IT_CC3) != RESET)
{
TIM_ClearITPendingBit(TIM2,TIM_IT_CC3);
capture = TIM_GetCapture3(TIM2);
if(PA7_state == 0)
{
TIM_SetCompare3(TIM2,capture + (u16)(CCR2_Val*Duty2));
PA7_state = 1;
}
else if(PA7_state == 1)
{
TIM_SetCompare3(TIM2,capture + (u16)(CCR2_Val*(1-Duty2)));
PA7_state = 0;
}
}
}
3、读取PWM波的定时器3的配置程序:
void PWM_Input_Init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
//注意一定不要忘了配置TIM_TimeBaseInit(),每次只要使用定时器的任何模式,都需要使用TIM_TimeBaseInit()
//不要在定时器2里面配置过了,在这个定时器3的配置程序中就忘了,他们是互不影响的
TIM_TimeBaseStructure.TIM_Period = 65535;
TIM_TimeBaseStructure.TIM_Prescaler = 71;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_PWMIConfig(TIM3, &TIM_ICInitStructure);
TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);
TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);
TIM_SelectMasterSlaveMode(TIM3, TIM_MasterSlaveMode_Enable);
TIM_Cmd(TIM3, ENABLE);
TIM_ITConfig(TIM3, TIM_IT_CC1,ENABLE);
}
4、读取PWM波的中断服务函数:
void TIM3_IRQHandler(void)
{
TIM_ClearITPendingBit(TIM3, TIM_IT_CC1);
IC2Value = TIM_GetCapture1(TIM3);
if (IC2Value != 0)
{
DutyCycle = (TIM_GetCapture2(TIM3) * 100) / IC2Value;
Frequency = SystemCoreClock / IC2Value;
}
else
{
DutyCycle = 0;
Frequency = 0;
}
}
5、显示函数:
sprintf((char*)str,"Frequency=%d",1000000/CCR1_Val);//72分频,所以计数频率是1MHz,所以PWM波频率就是1000000/CCR1_Val
LCD_DisplayStringLine(Line1,str);
sprintf((char*)str,"Duty1=%.1f",Duty1);
LCD_DisplayStringLine(Line2,str);
sprintf((char*)str,"Frequency=%d",Frequency/72);//读取的PWM波的频率,除以72是因为定时器计数的时候进行了72分频
LCD_DisplayStringLine(Line3,str);
sprintf((char*)str,"DutyCycle=%d%s",DutyCycle,"%");//读取PWM波的周期
LCD_DisplayStringLine(Line4,str);
我们读取完数据之后在进行计算PWM波频率的时候,如果你的定时器进行了分频,那么最后算出来的结果也需要除以相应的分频系数才是正确的结果,例如我在配置定时器的时候,进行了72分频,然后我在LCD进行显示的时候,让变量Frequency
又除以了72,这样算出来的结果才是PWM波的真正的频率。
接下来简单说一下捕获PWM波的基本原理:
n
m
PWM波的周期为:
T=(1/定时器计数频率)*n
PWM波的频率为:
f=1/T=定时器计数频率/n
若m为高电平的持续时间,则PWM波的占空比为:
Duty=(m/n)*100(百分制)
若m为低电平的持续时间,则PWM波的占空比为:
Duty=((n-m)/n)*100(百分制)
因为计数器为16位,所以一个周期最多计数到65535,所以测得的最小频率=
定时器时钟频率/65535
如果想测量更低的频率,我们可以使用另外一种方法进行测量:
1、定时器配置程序:
u8 TIM3CH2_Capture_Sta = 0;
u16 TIM3CH2_Capture_Val = 0;
void PWMInput_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(TIM3,&TIM_ICInitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_ITConfig(TIM3,TIM_IT_CC2 | TIM_IT_Update,ENABLE);
TIM_Cmd(TIM3, ENABLE);
}
2、中断处理函数:
void TIM3_IRQHandler(void)
{
if((TIM3CH2_Capture_Sta & 0x80) == 0)
{
if(TIM_GetITStatus(TIM3,TIM_IT_Update) != RESET)
{
if(TIM3CH2_Capture_Sta & 0x40)
{
if((TIM3CH2_Capture_Sta & 0x3f) == 0x3f)
{
TIM3CH2_Capture_Sta |= 0x80;
TIM3CH2_Capture_Val = 0xffff;
}
}
else
{
TIM3CH2_Capture_Sta++;
}
}
if(TIM_GetITStatus(TIM3,TIM_IT_CC2) != RESET)
{
if(TIM3CH2_Capture_Sta & 0x40)
{
TIM3CH2_Capture_Sta |= 0x80;
TIM3CH2_Capture_Val = TIM_GetCapture2(TIM3);
TIM_OC2NPolarityConfig(TIM3,TIM_ICPolarity_Rising);
}
else
{
TIM3CH2_Capture_Sta = 0;
TIM3CH2_Capture_Val = 0;
TIM3CH2_Capture_Sta |= 0x40;
TIM_SetCounter(TIM3,0);
TIM_OC2NPolarityConfig(TIM3,TIM_ICPolarity_Falling);
}
}
}
TIM_ClearITPendingBit(TIM3,TIM_IT_CC2 | TIM_IT_Update);
}
使用这种方法,虽然可以测量低频,但是中断服务函数稍微复杂了点,如果知道第一种测量方法已经足够用了,就尽量不选用第二种方法。关于第二种方法的基本原理在我之前的一篇博客里有讲解:
博客链接:https://blog.csdn.net/qq_36554582/article/details/81611272
参考资料:
https://blog.csdn.net/dainifeixiang/article/details/5499485