并查集(孩子指向父亲的树结构)

目录

并查集实现哪些功能

 并查集接口

 使用数组实现并查集

 并查集size优化

并查集深度优化

并查集路径压缩优化


 

  • 并查集实现哪些功能

并查集(孩子指向父亲的树结构)_第1张图片 并查集(孩子指向父亲的树结构)_第2张图片

  •  并查集接口

package com.suanfa.unionfind;
/**
 * 并查集接口,并查集是一种孩子指向父亲的树结构
 * @author Administrator
 *
 */
public interface UF {
	//并查集元素个数
    int getSize();
    //判断两个元素是否所属一个集合,是否可以连接
    boolean isConnected(int p, int q);
    //把两个元素并在一起
    void unionElements(int p, int q);
}
  •  使用数组实现并查集

并查集(孩子指向父亲的树结构)_第3张图片 

package com.suanfa.unionfind;

// 我们的第一版Union-Find并查集
public class UnionFind1 implements UF {

    private int[] id;    // 我们的第一版Union-Find本质就是一个数组

    public UnionFind1(int size) {

        id = new int[size];

        // 初始化, 每一个id[i]指向自己, 没有合并的元素
        for (int i = 0; i < size; i++)
            id[i] = i;
    }

    @Override
    public int getSize(){
        return id.length;
    }

    // 查找元素p所对应的集合编号
    // O(1)复杂度
    private int find(int p) {
        if(p < 0 || p >= id.length)
            throw new IllegalArgumentException("p is out of bound.");

        return id[p];
    }

    // 查看元素p和元素q是否所属一个集合
    // O(1)复杂度
    @Override
    public boolean isConnected(int p, int q) {
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(n) 复杂度
    @Override
    public void unionElements(int p, int q) {

        int pID = find(p);
        int qID = find(q);

        if (pID == qID)
            return;

        // 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并
        for (int i = 0; i < id.length; i++)
            if (id[i] == pID)
                id[i] = qID;
    }
}
package com.suanfa.unionfind;
// 我们的第二版Union-Find并查集
public class UnionFind2 implements UF {

    // 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树
    // parent[i]表示第一个元素所指向的父节点
    private int[] parent;

    // 构造函数
    public UnionFind2(int size){

        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ )
            parent[i] = i;
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while(p != parent[p])
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){
    	//结合树形图理解
        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        parent[pRoot] = qRoot;
    }
}
  •  并查集size优化

 并查集(孩子指向父亲的树结构)_第4张图片

package com.suanfa.unionfind;
// 我们的第三版Union-Find并查集,通过节点个数进行优化,节点个数少的合并到节点个数多的上面
public class UnionFind3 implements UF{

    private int[] parent; // parent[i]表示第一个元素所指向的父节点
    private int[] sz;     // sz[i]表示以i为根的集合中元素个数

    // 构造函数
    public UnionFind3(int size){

        parent = new int[size];
        sz = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for(int i = 0 ; i < size ; i ++){
            parent[i] = i;
            sz[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while( p != parent[p] )
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if(pRoot == qRoot)
            return;

        // 根据两个元素所在树的元素个数不同判断合并方向
        // 将元素个数少的集合合并到元素个数多的集合上
        if(sz[pRoot] < sz[qRoot]){
            parent[pRoot] = qRoot;
            sz[qRoot] += sz[pRoot];
        }
        else{ // sz[qRoot] <= sz[pRoot]
            parent[qRoot] = pRoot;
            sz[pRoot] += sz[qRoot];
        }
    }
}
  • 并查集深度优化

 并查集(孩子指向父亲的树结构)_第5张图片并查集(孩子指向父亲的树结构)_第6张图片

package com.suanfa.unionfind;
// 我们的第四版Union-Find并查集,通过深度进行优化,把深度小的树合并到深度大的树上
public class UnionFind4 implements UF {

    private int[] rank;   // rank[i]表示以i为根的集合所表示的树的层数
    private int[] parent; // parent[i]表示第i个元素所指向的父节点

    // 构造函数
    public UnionFind4(int size){

        rank = new int[size];
        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while(p != parent[p])
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的rank不同判断合并方向
        // 将rank低的集合合并到rank高的集合上
        if(rank[pRoot] < rank[qRoot])
            parent[pRoot] = qRoot;
        else if(rank[qRoot] < rank[pRoot])
            parent[qRoot] = pRoot;
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 此时, 我维护rank的值
        }
    }
}
  • 并查集路径压缩优化

 并查集(孩子指向父亲的树结构)_第7张图片并查集(孩子指向父亲的树结构)_第8张图片

package com.suanfa.unionfind;
// 我们的第五版Union-Find并查集,路径压缩优化
public class UnionFind5 implements UF {

    // rank[i]表示以i为根的集合所表示的树的层数
    // 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
    // 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
    private int[] rank;
    private int[] parent; // parent[i]表示第i个元素所指向的父节点

    // 构造函数
    public UnionFind5(int size){

        rank = new int[size];
        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        while( p != parent[p] ){
            parent[p] = parent[parent[p]];//路径优化核心代码
            p = parent[p];
        }
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的rank不同判断合并方向
        // 将rank低的集合合并到rank高的集合上
        if( rank[pRoot] < rank[qRoot] )
            parent[pRoot] = qRoot;
        else if( rank[qRoot] < rank[pRoot])
            parent[qRoot] = pRoot;
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 此时, 我维护rank的值
        }
    }
}

 

你可能感兴趣的:(玩转数据结构和算法,并查集)