pandas ----数据分类(category)

目录

  • 1.category的创建及其性质
    • 1.1. 分类变量的创建
    • 1.2. 分类变量的结构
    • 1.3. 类别的修改
  • 2.分类变量的排序
    • 2.1. 序的建立
  • 3.分类变量的比较操作
    • 3.1. 与标量或等长序列的比较
    • 3.2. 与另一分类变量的比较

1.category的创建及其性质

这是对pandas分类数据类型的介绍,包括与R的简短比较factor。

category是与统计中分类变量相对应的 pandas数据类型。分类变量具有有限的且通常是固定的数量的可能值(类别;R中的级别)。例子包括性别,社会阶层,血型,国家归属,观察时间或通过李克特量表的评分。

与统计分类变量相比,category数据可能具有顺序(例如“强烈同意”与“同意”或“第一次观察”与“第二次观察”),但是数字运算(加法,除法……)是不可能的。

category数据的所有值都在类别或np.nan中。顺序由类别的顺序定义,而不是值的词汇顺序。在内部,该数据结构由一个的类别阵列和的整数数组码,其指向在现实值的类别阵列。

1.1. 分类变量的创建

(a)用Series创建

pd.Series(["a", "b", "c", "a"], dtype="category")
0    a
1    b
2    c
3    a
dtype: category
Categories (3, object): [a, b, c]

(b)对DataFrame指定类型创建

temp_df = pd.DataFrame({'A':pd.Series(["a", "b", "c", "a"], dtype="category"),'B':list('abcd')})
temp_df.dtypes
A    category
B      object
dtype: object

(c)利用内置Categorical类型创建

cat = pd.Categorical(["a", "b", "c", "a"], categories=['a','b','c'])
pd.Series(cat)
0    a
1    b
2    c
3    a
dtype: category
Categories (3, object): [a, b, c]

(d)利用cut函数创建
默认使用区间类型为标签

pd.cut(np.random.randint(0,60,5), [0,10,30,60])
[(0, 10], (30, 60], (10, 30], (30, 60], (10, 30]]
Categories (3, interval[int64]): [(0, 10] < (10, 30] < (30, 60]]

可指定字符为标签

pd.cut(np.random.randint(0,60,5), [0,10,30,60], right=False, labels=['0-10','10-30','30-60'])
[10-30, 10-30, 0-10, 10-30, 30-60]
Categories (3, object): [0-10 < 10-30 < 30-60]

1.2. 分类变量的结构

一个分类变量包括三个部分,元素值(values)、分类类别(categories)、是否有序(order)

从上面可以看出,使用cut函数创建的分类变量默认为有序分类变量
下面介绍如何获取或修改这些属性

(a)describe方法
该方法描述了一个分类序列的情况,包括非缺失值个数、元素值类别数(不是分类类别数)、最多次出现的元素及其频数

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.describe()
count     4
unique    3
top       a
freq      2
dtype: object

(b)categories和ordered属性
查看分类类别和是否排序

s.cat.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
s.cat.ordered
False
  1. 类别的修改
    (a)利用set_categories修改
    修改分类,但本身值不会变化
s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.set_categories(['new_a','c'])
0    NaN
1    NaN
2      c
3    NaN
4    NaN
dtype: category
Categories (2, object): [new_a, c]

(b)利用rename_categories修改
需要注意的是该方法会把值和分类同时修改

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.rename_categories(['new_%s'%i for i in s.cat.categories])
0    new_a
1    new_b
2    new_c
3    new_a
4      NaN
dtype: category
Categories (4, object): [new_a, new_b, new_c, new_d]

利用字典修改值

s.cat.rename_categories({'a':'new_a','b':'new_b'})
0    new_a
1    new_b
2        c
3    new_a
4      NaN
dtype: category
Categories (4, object): [new_a, new_b, c, d]

(c)利用add_categories添加

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.add_categories(['e'])
0      a
1      b
2      c
3      a
4    NaN
dtype: category
Categories (5, object): [a, b, c, d, e]

(d)利用remove_categories移除

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.remove_categories(['d'])
0      a
1      b
2      c
3      a
4    NaN
dtype: category
Categories (3, object): [a, b, c]

(e)删除元素值未出现的分类类型

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.remove_unused_categories()
0      a
1      b
2      c
3      a
4    NaN
dtype: category
Categories (3, object): [a, b, c]

1.3. 类别的修改

(a)利用set_categories修改
修改分类,但本身值不会变化

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.set_categories(['new_a','c'])
0    NaN
1    NaN
2      c
3    NaN
4    NaN
dtype: category
Categories (2, object): [new_a, c]

(b)利用rename_categories修改
需要注意的是该方法会把值和分类同时修改

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.rename_categories(['new_%s'%i for i in s.cat.categories])
0    new_a
1    new_b
2    new_c
3    new_a
4      NaN
dtype: category
Categories (4, object): [new_a, new_b, new_c, new_d]

利用字典修改值

s.cat.rename_categories({'a':'new_a','b':'new_b'})
0    new_a
1    new_b
2        c
3    new_a
4      NaN
dtype: category
Categories (4, object): [new_a, new_b, c, d]

(c)利用add_categories添加

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.add_categories(['e'])
0      a
1      b
2      c
3      a
4    NaN
dtype: category
Categories (5, object): [a, b, c, d, e]

(d)利用remove_categories移除

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.remove_categories(['d'])
0      a
1      b
2      c
3      a
4    NaN
dtype: category
Categories (3, object): [a, b, c]

(e)删除元素值未出现的分类类型

s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.remove_unused_categories()
0      a
1      b
2      c
3      a
4    NaN
dtype: category
Categories (3, object): [a, b, c]

2.分类变量的排序

分类数据类型被分为有序和无序,例如分数区间的高低是有序变量,考试科目的类别一般看做无序变量

2.1. 序的建立

(a)一般来说会将一个序列转为有序变量,可以利用as_ordered方法

s = pd.Series(["a", "d", "c", "a"]).astype('category').cat.as_ordered()
s
0    a
1    d
2    c
3    a
dtype: category
Categories (3, object): [a < c < d]

退化为无序变量,只需要使用as_unordered

s.cat.as_unordered()
0    a
1    d
2    c
3    a
dtype: category
Categories (3, object): [a, c, d]

(b)利用set_categories方法中的order参数

pd.Series(["a", "d", "c", "a"]).astype('category').cat.set_categories(['a','c','d'],ordered=True)
0    a
1    d
2    c
3    a
dtype: category
Categories (3, object): [a < c < d]

(c)利用reorder_categories方法
这个方法的特点在于,新设置的分类必须与原分类为同一集合

s = pd.Series(["a", "d", "c", "a"]).astype('category')
s.cat.reorder_categories(['a','c','d'],ordered=True)
0    a
1    d
2    c
3    a
dtype: category
Categories (3, object): [a < c < d]
#s.cat.reorder_categories(['a','c'],ordered=True) #报错
#s.cat.reorder_categories(['a','c','d','e'],ordered=True) #报错
  1. 排序
    值排序和索引排序都是适用的
s = pd.Series(np.random.choice(['perfect','good','fair','bad','awful'],50)).astype('category')
s.cat.set_categories(['perfect','good','fair','bad','awful'][::-1],ordered=True).head()
0     good
1     good
2    awful
3     fair
4      bad
dtype: category
Categories (5, object): [awful < bad < fair < good < perfect]
s.sort_values(ascending=False).head()
1    d
2    c
3    a
0    a
dtype: category
Categories (3, object): [a, c, d]
df_sort = pd.DataFrame({'cat':s.values,'value':np.random.randn(50)}).set_index('cat')
df_sort.head()
value
cat
good 1.842078
good 0.398738
awful 0.666697
fair 0.136636
bad 0.063595
df_sort.sort_index().head()
value
cat
awful 0.293804
awful 0.737856
awful -0.329468
awful -0.482377
awful -1.762238

3.分类变量的比较操作

3.1. 与标量或等长序列的比较

(a)标量比较

s = pd.Series(["a", "d", "c", "a"]).astype('category')
s == 'a'
0     True
1    False
2    False
3     True
dtype: bool

(b)等长序列比较

s == list('abcd')
0     True
1    False
2     True
3    False
dtype: bool

3.2. 与另一分类变量的比较

(a)等式判别(包含等号和不等号)
两个分类变量的等式判别需要满足分类完全相同

s = pd.Series(["a", "d", "c", "a"]).astype('category')
s == s
0    True
1    True
2    True
3    True
dtype: bool
s != s
0    False
1    False
2    False
3    False
dtype: bool
s_new = s.cat.set_categories(['a','d','e'])
#s == s_new #报错

(b)不等式判别(包含>=,<=,<,>)
两个分类变量的不等式判别需要满足两个条件:
① 分类完全相同
② 排序完全相同

s = pd.Series(["a", "d", "c", "a"]).astype('category')
#s >= s #报错
s = pd.Series(["a", "d", "c", "a"]).astype('category').cat.reorder_categories(['a','c','d'],ordered=True)
s >= s
0    True
1    True
2    True
3    True
dtype: bool

你可能感兴趣的:(python,数据挖掘)