决策树,decision的pyton代码和注释(机器学习实战)

Decison Tree的注释:画图部分不给注释了

from math import log
import numpy
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
#这个是字典,{a:1,b:2}其中a,b是key,1,2是对应的value
    for featVec in dataSet:
        currentLabel = featVec[-1]
#-1代表最后一行,也就是类标
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2)
    return shannonEnt
def createDataSet():
    dataSet=[[1,1,'yes'],
             [1,1,'yes'],
             [1,0,'no'],
             [0,1,'yes'],
             [0,1,'no']]
    labels=['no surfacing','flippers']
    return dataSet,labels
#依据特征划分数据集  axis代表第几个特征  value代表该特征所对应的值  返回的是划分后的数据集
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
#这里的featVec[:axis],是指从第1(就是下标0)个数到第axis个,不包含
            reducedFeatVec.extend(featVec[axis+1:])
#同上,这里的[axis+1,:]就是从最后到axis+1
            retDataSet.append(reducedFeatVec)
#extend,append都是扩展用的,a=[1,2],b=[3,4],a.append(b)=[1,2,[3,4]],a.extend(b)=[1,2,3,4]
    return retDataSet
 
  
#选择最好的数据集(特征)划分方式  返回最佳特征下标
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1   #特征个数
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):   #遍历特征 第i个
        featureSet = set([example[i] for example in dataSet])   #第i个特征取值集合
#这一部分代码没啥难度,跟matalb差不多,唯一就是这个set
        newEntropy= 0.0
        for value in featureSet:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)   #该特征划分所对应的entropy
        infoGain = baseEntropy - newEntropy
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
 
  
#创建树的函数代码   python中用字典类型来存储树的结构 返回的结果是myTree-字典
def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):    #类别完全相同则停止继续划分  返回类标签-叶子节点
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)       #遍历完所有的特征时返回出现次数最多的
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]    #得到的列表包含所有的属性值
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree
 
  
#多数表决的方法决定叶子节点的分类 ----  当所有的特征全部用完时仍属于多类
def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.key():
            classCount[vote] = 0;
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key = operator.itemgetter(1), reverse = True)
#排序函数,至于怎么用,help就好,里面参数设置有详细例子
    return sortedClassCount[0][0]
 
  
 
  
创建树的函数代码   其实这一步应该放在上一步前面
def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):    #类别完全相同则停止继续划分  返回类标签-叶子节点
        return classList[0]
#count是数数目的函数,a=[1,1,2] a.count[1]=2 len相当于matalb里的length
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)       #遍历完所有的特征时返回出现次数最多的
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]    #得到的列表包含所有的属性值
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
#这一步creteTree里面又用了creatTree,递归调用,直到len(dataSet[0]) == 1:
    return myTree

 
 

你可能感兴趣的:(算法)