常见工具库如下:
1、matplotlib
from matplotlib import pyplot as plt
years = [1950, 1960, 1970, 1980, 1990, 2000, 2010]
gdp = [300.2, 543.3, 1075.9, 2862.5, 5979.6, 10289.7, 14958.3]
plt.plot(years, gdp, color='green', marker='o', linestyle='solid')
# add a title
plt.title("Nominal GDP")
# add a label to the y-axis
plt.ylabel("Billions of $")
plt.show()
2、Bar Charts
基本用法
movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "West Side Story"]
num_oscars = [5, 11, 3, 8, 10]
# bars are by default width 0.8, so we'll add 0.1 to the left coordinates # so that each bar is centered
xs = [i + 0.1 for i, _ in enumerate(movies)]
# plot bars with left x-coordinates [xs], heights [num_oscars]
plt.bar(xs, num_oscars)
plt.ylabel("# of Academy Awards")
plt.title("My Favorite Movies")
# label x-axis with movie names at bar centers
plt.xticks([i + 0.5 for i, _ in enumerate(movies)], movies)
plt.show()
计算数值出现的次数,得到分布结果
from collections import Counter
grades = [83,95,91,87,70,0,85,82,100,67,73,77,0]
decile = lambda grade: grade // 10 * 10
histogram = Counter(decile(grade) for grade in grades)
plt.bar([x - 4 for x in histogram.keys()], # shift each bar to the left by 4
histogram.values(), # give each bar its correct height
8) # give each bar a width of 8
plt.axis([-5, 105, 0, 5]) # x-axis from -5 to 105,
# y-axis from 0 to 5
plt.xticks([10 * i for i in range(11)]) # x-axis labels at 0, 10, ..., 100
plt.xlabel("Decile")
plt.ylabel("# of Students")
plt.title("Distribution of Exam 1 Grades")
plt.show()
对比反差,横坐标从非零开始
mentions = [500, 505]
years = [2013, 2014]
plt.bar([2012.6, 2013.6], mentions, 0.8)
plt.xticks(years)
plt.ylabel("# of times I heard someone say 'data science'")
# if you don't do this, matplotlib will label the x-axis 0, 1
# and then add a +2.013e3 off in the corner (bad matplotlib!)
plt.ticklabel_format(useOffset=False)
# misleading y-axis only shows the part above 500
plt.axis([2012.5,2014.5,499,506])
plt.title("Look at the 'Huge' Increase!")
plt.show()
对比,把横坐标设成从零开始
plt.axis([2012.5,2014.5,0,550])
plt.title("Not So Huge Anymore")
plt.show()
3、Line Charts
variance = [1, 2, 4, 8, 16, 32, 64, 128, 256]
bias_squared = [256, 128, 64, 32, 16, 8, 4, 2, 1]
total_error = [x + y for x, y in zip(variance, bias_squared)]
xs = [i for i, _ in enumerate(variance)]
# we can make multiple calls to plt.plot # to show multiple series on the same chart
plt.plot(xs, variance, 'g-', label='variance') # green solid line
plt.plot(xs, bias_squared, 'r-.', label='bias^2') # red dot-dashed line
plt.plot(xs, total_error, 'b:', label='total error') # blue dotted line
# because we've assigned labels to each series
# we can get a legend for free # loc=9 means "top center"
plt.legend(loc=9)
plt.xlabel("model complexity")
plt.title("The Bias-Variance Tradeoff")
plt.show()
4、Scatterplots
friends = [ 70, 65, 72, 63, 71, 64, 60, 64, 67]
minutes = [175, 170, 205, 120, 220, 130, 105, 145, 190]
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']
plt.scatter(friends, minutes)
# label each point
for label, friend_count, minute_count in zip(labels, friends, minutes):
plt.annotate(label,
xy=(friend_count, minute_count), # put the label with its point
xytext=(5, -5), # but slightly offset
textcoords='offset points')
plt.title("Daily Minutes vs. Number of Friends")
plt.xlabel("# of friends")
plt.ylabel("daily minutes spent on the site")
plt.show()
对比两个变量时,让matplotlib选择横纵坐标各自的间隔,可能会出现错误的对比图
test_1_grades = [ 99, 90, 85, 97, 80]
test_2_grades = [100, 85, 60, 90, 70]
plt.scatter(test_1_grades, test_2_grades)
plt.title("Axes Aren't Comparable")
plt.xlabel("test 1 grade")
plt.ylabel("test 2 grade")
plt.show()
添加plt.axis("equal")就能得到精确结果
test_1_grades = [ 99, 90, 85, 97, 80]
test_2_grades = [100, 85, 60, 90, 70]
plt.scatter(test_1_grades, test_2_grades)
plt.title("Axes Aren't Comparable")
plt.xlabel("test 1 grade")
plt.ylabel("test 2 grade")
plt.axis("equal")
plt.show()