[CODEVS 1043] Noip 2000 方格取数

1043 方格取数

 时间限制: 1s   空间限制: 128000 KB
 
 
题目描述 Description

设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

 

某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

 

输入描述 Input Description

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出描述 Output Description

    只需输出一个整数,表示2条路径上取得的最大的和。

样例输入 Sample Input

      8

      2  3  13

      2  6   6

      3  5   7

      4  4  14

      5  2  21

      5  6   4

      6 3  15

      7 2  14

      0 0  0

样例输出 Sample Output

      67

数据范围及提示 Data Size & Hint
如描述
 
【题解】
这些前些年的NOIP的题目,就看看想下思路就行了,不必要去写代码。
这题的动态规划思路十分巧妙。
思路一:
我们设f[i,j,k,l]表示第一条路走到(i,j),第二条路走到(k,l)的路线。
那么状态转移方程很好得出:
f[i,j,k,l]=max{f[i-1,j,k-1],f[i-1,j,k,l-1],f[i,j-1,k-1,l],f[i,j-1,k,l-1]}+(i==k&&j==l ? a[i][j] : a[i][j]+a[k][l])
值得注意的是:最后加上这个值的时候要注意如果路径走到同一点不能重复统计。
时间复杂度:O(n4),空间复杂度O(n4),对于本题n<=10完全足够。
思路二:
虽然思路一对于本题完全足够,但是如果n的范围大些的话,就无法办到了。
针对思路一,我们发现了问题,有一些状态是可以合并的,最重要的是:思路一,我们是同时开始走的,那么不必记录向右、向下的具体路径,只需要记录步数,显然,两条路的步数是统一的,然后再记录向下或向右的次数,就能根据这两者推算出向下或向右的次数。
那么设f[i,j,k]表示走到了第i步,第一条路径向走了j步,第二条路径向走了k步。
那么f[i,j,k]=max{f[i-1,j,k],f[i-1,j-1,k],f[i-1,j-1,k-1],f[i-1,j,k-1]}+(j==k ? a[i-j+1][i] : a[i-j+1][j]+a[i-k+1][k]);
显然,我们也要判断路径是否走到同一点,所以有后面的那个if( ? : 三目运算符)
时间复杂度:O(2n3),空间复杂度O(2n3),优化了一维。从n的四方优化至n的三方,是一个很大的进步。
至于代码,只要思路知道了,就无所谓了。
代码复杂度不高,50行足矣。

转载于:https://www.cnblogs.com/TonyNeal/p/codevs1043.html

你可能感兴趣的:([CODEVS 1043] Noip 2000 方格取数)