基于Tensorflow的动态实时检测识别测试案例

当然是借助了tensorflow的ssd_mobilenet_v1_coco_11_06_2017模型数据已经训练好的模型来进行实时检测。不足的地方在于不能能够在复杂环境下进行模式的识别。

# -*- coding: utf-8 -*-
"""
Created on Thu Jan 11 16:55:43 2018

@author: Xiang Guo
"""
# Imports
import time

start = time.time()
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# if tf.__version__ < '1.4.0':
#     raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')

os.chdir('./')#表示根目录下

# Env setup
# This is needed to display the images.
# %matplotlib inline

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")

# Object detection imports
from utils import label_map_util

from utils import visualization_utils as vis_util

# Model preparation
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'

MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

'''
#Download Model

opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())
'''

# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

    # Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
                                                            use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# Helper code
def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)

# Detection
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images2'
TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'frame{}.jpg'.format(i)) for i in range(2176, 2179)]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

output_path = ('D:\\tensorflow-model\\models\\research\\object_detection\\test_output\\')

vidcap = cv2.VideoCapture(0)

with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        # Definite input and output Tensors for detection_graph
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
        detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        while (True):
            ret, image_np = vidcap.read()

            if ret == True:

                # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
                image_np_expanded = np.expand_dims(image_np, axis=0)
                # Actual detection.
                (boxes, scores, classes, num) = sess.run(
                    [detection_boxes, detection_scores, detection_classes, num_detections],
                    feed_dict={image_tensor: image_np_expanded})
                # Visualization of the results of a detection.
                vis_util.visualize_boxes_and_labels_on_image_array(
                    image_np,
                    np.squeeze(boxes),
                    np.squeeze(classes).astype(np.int32),
                    np.squeeze(scores),
                    category_index,
                    use_normalized_coordinates=True,
                    line_thickness=8)

                cv2.imshow('object_detection', cv2.resize(image_np, (800, 600)))
                if cv2.waitKey(25) & 0xFF == ord('q'):
                    cv2.destroyAllWindows()
                    break

            # Break the loop
            else:
                break

end = time.time()
print("Execution Time: ", end - start)

运行的截图效果:

基于Tensorflow的动态实时检测识别测试案例_第1张图片

 

你可能感兴趣的:(深度学习及其算法模型)