#洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (tarjan + spfa最长路 / 分层图最长路)

收起

题目描述

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.

Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).

As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

输入格式

INPUT: (file grass.in)

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000).

The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

输入:

第一行:草场数n,道路数m。

以下m行,每行x和y表明有x到y的单向边,不会有重复的道路出现。

输出格式

OUTPUT: (file grass.out)

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

输出:

一个数,逆行一次最多可以走几个草场。

输入输出样例

输入 #1

7 10 
1 2 
3 1 
2 5 
2 4 
3 7 
3 5 
3 6 
6 5 
7 2 
4 7 

输出 #1

6 

说明/提示

SOLUTION NOTES:

Here is an ASCII drawing of the sample input:

v---3-->6
7   | \ |
^\  v  \|
| \ 1   |
|   |   v
|   v   5
4<--2---^

Bessie can visit pastures 1, 2, 4, 7, 2, 5, 3, 1 by traveling

backwards on the path between 5 and 3. When she arrives at 3 she

cannot reach 6 without following another backwards path.

题目大意 :

输入一张有向图, 需要你从点1出发最后回到点1, 可以逆行一次, 输出最多能够经过的点数

思路 : 刚看这道题觉得是分层图最短路, 不过一时半会没建好图。由于环内的点互相可达, 所以先缩点, 并记录每个联通块包含的点的数量, 然后建两张新图, 分别为缩完点后的正向图和反向图, 为了求出点1到各个点之间的距离记为dis1和各个点到1的距离记为dis2,注意缩完点后就是一张DAG图, 要想判断逆行哪条边, 只要遍历每一条边(正向图), 对于该边的两个点 ui, vi(ui指向vi), 如果存在dis2【ui】 > 0 并且 dis1【vi】 > 0, 那么说明逆行该边可以回到点1(画一张图就明白了),然后更新最大值 max(ans, dis2【ui】 + dis1【vi】 - 点1所在连通块的点个数 ), 最后所得即为答案

再说一下分层图最短路的做法, 由于逆行一次, 多建一层图, 编号为scnt(缩完点后的总点数) 到 2 * scnt, 新图两点之间连边和原图一样, 如果原图有ui到vi的边, 再建一条vi到scnt + ui的边, 跑一遍最长路就好, 过程中,点N到点scnt + N的权值为0,其他的和上面的跑法一样

Accepted code

tarjan + spfa

#include
#include
using namespace std;

#define sc scanf
#define ls rt << 1
#define rs ls | 1
#define Min(x, y) x = min(x, y)
#define Max(x, y) x = max(x, y)
#define ALL(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define MEM(x, b) memset(x, b, sizeof(x))
#define lowbit(x) ((x) & (-x))
#define P2(x) ((x) * (x))

typedef long long ll;
const int MOD = 1e9 + 7;
const int MAXN = 2e5 + 100;
const int INF = 0x3f3f3f3f;
inline ll fpow(ll a, ll b){ ll r = 1, t = a; while (b){ if (b & 1)r = (r*t) % MOD; b >>= 1; t = (t*t) % MOD; }return r; }

struct Edge
{
	ll v, next;
}e[MAXN << 1], edge[MAXN << 1], E[MAXN << 1];
ll head[MAXN], fa[MAXN], pre[MAXN], n, m, cnt, bnt, ant;//head,e为原图,fa,edge为新图正向
ll dfn[MAXN], low[MAXN], tot, scnt;                  // pre,E为新图反向
ll suo[MAXN], dis1[MAXN], dis2[MAXN]; //dis1为1到各个点经过的点数,dis2为各个点到1经过点数
ll sum[MAXN];   // 连通块包含的点数
stack  st;
bool vis[MAXN];
void init() {
	MEM(head, -1); MEM(fa, -1); MEM(pre, -1);
}
void add(ll from, ll to) {
	e[++cnt].v = to;
	e[cnt].next = head[from];
	head[from] = cnt;
}
void Add(ll from, ll to) {
	edge[++bnt].v = to;
	edge[bnt].next = fa[from];
	fa[from] = bnt;
}
void op_Add(ll from, ll to) {
	E[++ant].v = to;
	E[ant].next = pre[from];
	pre[from] = ant;
}
void tarjan(ll x) {
	dfn[x] = low[x] = ++tot;
	vis[x] = 1; st.push(x);
	for (ll i = head[x]; i != -1; i = e[i].next) {
		ll vi = e[i].v;
		if (!dfn[vi]) {
			tarjan(vi);
			low[x] = min(low[x], low[vi]);
		}
		else if (vis[vi]) low[x] = min(low[x], dfn[vi]);
	}
	if (dfn[x] == low[x]) {
		scnt++;
		ll k;
		do {
			k = st.top();
			st.pop();
			suo[k] = scnt;
			sum[scnt]++;
			vis[k] = 0;
		} while (k != x);
	}
}
void spfa1(ll x) {
	MEM(dis1, 0); MEM(vis, 0);
	queue  q; dis1[suo[x]] = sum[suo[x]];
	vis[suo[x]] = true; q.push(suo[x]);
	while (!q.empty()) {
		ll ans = q.front();
		q.pop();
		vis[ans] = false;
		for (ll i = fa[ans]; i != -1; i = edge[i].next) {
			ll vi = edge[i].v;
			if (dis1[vi] < dis1[ans] + sum[vi]) {
				dis1[vi] = dis1[ans] + sum[vi];
				if (!vis[vi]) {
					vis[vi] = true;
					q.push(vi);
				}
			}
		}
	}
}
void spfa2(ll x) {
	MEM(dis2, 0); MEM(vis, 0);
	queue  q; dis2[suo[x]] = sum[suo[x]];
	vis[suo[x]] = true; q.push(suo[x]);
	while (!q.empty()) {
		ll ans = q.front();
		q.pop();
		vis[ans] = false;
		for (ll i = pre[ans]; i != -1; i = E[i].next) {
			ll vi = E[i].v;
			if (dis2[vi] < dis2[ans] + sum[vi]) {
				dis2[vi] = dis2[ans] + sum[vi];
				if (!vis[vi]) {
					vis[vi] = true;
					q.push(vi);
				}
			}
		}
	}
}

int main()
{
	cin >> n >> m; init();
	for (ll i = 0; i < m; i++) {
		ll ui, vi;
		sc("%lld %lld", &ui, &vi);
		add(ui, vi);
	}
	for (ll i = 1; i <= n; i++) {
		if (!dfn[i]) tarjan(i);
	}
	if (scnt == 1) { cout << n << endl; return 0; }
	for (ll i = 1; i <= n; i++) {
		for (ll j = head[i]; j != -1; j = e[j].next) {
			ll ui = suo[i], vi = suo[e[j].v], wi = sum[ui];
			if (ui != vi) Add(ui, vi), op_Add(vi, ui);
		}
	}
	spfa1(1); spfa2(1);  
	ll ans = sum[suo[1]]; // 1点所在的连通块数目
	for (ll i = 1; i <= scnt; i++) {
		for (ll j = fa[i]; j != -1; j = edge[j].next) {
			ll vi = edge[j].v;
			if (dis1[vi] == 0 || dis2[i] == 0) continue;
			Max(ans, dis1[vi] + dis2[i] - sum[suo[1]]);
		}
	}
	cout << ans << endl;
	return 0;
}

分层图最长路

#include
#include
using namespace std;

#define sc scanf
#define ls rt << 1
#define rs ls | 1
#define Min(x, y) x = min(x, y)
#define Max(x, y) x = max(x, y)
#define ALL(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define MEM(x, b) memset(x, b, sizeof(x))
#define lowbit(x) ((x) & (-x))
#define P2(x) ((x) * (x))

typedef long long ll;
const int MOD = 1e9 + 7;
const int MAXN = 2e5 + 100;
const int INF = 0x3f3f3f3f;
inline ll fpow(ll a, ll b){ ll r = 1, t = a; while (b){ if (b & 1)r = (r*t) % MOD; b >>= 1; t = (t*t) % MOD; }return r; }

struct Edge
{
	int v, next;
}e[MAXN << 1], edge[MAXN << 1];
int head[MAXN], pre[MAXN], n, m, cnt, stot;
int dfn[MAXN], low[MAXN], tot, scnt;
int suo[MAXN], sum[MAXN], dis[MAXN];
bool vis[MAXN];
stack  st;
void init() {
	MEM(head, -1); MEM(pre, -1);
}
void add(int from, int to) {
	e[++cnt].v = to;
	e[cnt].next = head[from];
	head[from] = cnt;
}
void Add(int from, int to) {
	edge[++stot].v = to;
	edge[stot].next = pre[from];
	pre[from] = stot;
}
void tarjan(int x) {
	dfn[x] = low[x] = ++tot;
	st.push(x); vis[x] = true;
	for (int i = head[x]; i != -1; i = e[i].next) {
		int vi = e[i].v;
		if (!dfn[vi]) {
			tarjan(vi);
			low[x] = min(low[x], low[vi]);
		}
		else if (vis[vi]) low[x] = min(low[x], dfn[vi]);
	}
	if (dfn[x] == low[x]) {
		scnt++;
		int k;
		do {
			k = st.top();
			st.pop();
			suo[k] = scnt;
			sum[scnt]++;
			vis[k] = false;
		} while (k != x);
	}
}
int spfa(int x) {
	MEM(dis, 0); queue  q;
	MEM(vis, 0); vis[x] = true;
	q.push(x); dis[x] = sum[x];
	while (!q.empty()) {
		int ans = q.front();
		q.pop();
		vis[ans] = false;;
		for (int i = pre[ans]; i != -1; i = edge[i].next) {
			int vi = edge[i].v;
			if (vi == ans + scnt) { dis[vi] = dis[ans]; q.push(vi); vis[vi] = true; continue; }
			if (dis[vi] < dis[ans] + sum[vi]) {
				dis[vi] = dis[ans] + sum[vi];
				if (!vis[vi]) {
					q.push(vi);
					vis[vi] = true;
				}
			}
		}
	}
}

int main()
{
	cin >> n >> m; init();
	for (int i = 0; i < m; i++) {
		int ui, vi;
		sc("%d %d", &ui, &vi);
		add(ui, vi);
	}
	for (int i = 1; i <= n; i++) {
		if (!dfn[i]) tarjan(i);
	}
	for (int i = 1; i <= scnt; i++) sum[i + scnt] = sum[i];
	for (int i = 1; i <= n; i++) {
		for (int j = head[i]; j != -1; j = e[j].next) {
			int ui = suo[i], vi = suo[e[j].v];
			if (ui != vi) Add(ui, vi), Add(vi, ui + scnt), Add(ui + scnt, vi + scnt);
		}
	}
	spfa(suo[1]);
	for (int i = 1; i <= 2 * scnt; i++) cout << dis[i] << " ";
	cout << endl;
	return 0;
}

 

你可能感兴趣的:(Vjudge)