- opencv学习:图像旋转的两种方法,旋转后的图片进行模板匹配代码实现
夜清寒风
学习opencv机器学习人工智能计算机视觉
图像旋转在图像处理中,rotate和rot90是两种常见的图像旋转方法,它们在功能和使用上有一些区别。下面我将分别介绍这两种方法,并解释它们的主要区别rot90方法rot90方法是NumPy提供的一种数组旋转函数,它主要用于对二维数组(如图像)进行90度的旋转。这个方法比较简单,只支持90度的倍数旋转,不支持任意角度旋转。使用NumPy进行旋转使用NumPy的rot90函数对模板图像进行旋转操作。
- opencv 学习 1
木木ainiks
opencv计算机视觉python
opencv学习的第一天#coding:utf-8importcv2ascv#首先读图片src=cv.imread(“img/1.jpg”)#设置图片的名字cv.namedWindow(“1”,cv.WINDOW_AUTOSIZE)#显示图片第一个参数设置图片名,第二个参数图片的地址cv.imshow(“1”,src)cv.waitKey(0)#将图片写入固定位置cv.imwrite(“img/2
- opencv学习:形态学操作和边缘检测算子
夜清寒风
opencv学习人工智能算法计算机视觉
cv2.morphologyEx()是OpenCV库中的一个函数,用于执行更复杂的形态学操作。这个函数可以执行开运算、闭运算、梯度运算、膨胀、腐蚀以及顶帽和黑帽转换等。这些操作通常用于图像预处理,如去除噪声、平滑边界、突出特征等。dst=cv2.morphologyEx(src,op,kernel[,dst[,anchor[,iterations[,borderType[,borderValue]
- 零基础Opencv学习(二)
随风逐流wrx
opencv学习人工智能
图像变换一、边缘检测1:边缘检测Cannycv::MatiamgeCan;cv::Canny(image,iamgeCan,3,9,3);cv::imshow("Canny",iamgeCan);///边缘检测高级用法Canny用法cv::Matdst,edge,gray;dst.create(image.size(),image.type());///图像转灰度图像cv::cvtColor(im
- opencv学习笔记19-opencv焊点(原点)计数
The_xz
opencv学习笔记
一、原理:opencv学习笔记13-opencv连通组件标记实现硬币计数二、不同情况思路:当焊点为背景时,进行反色处理(二值化后若焊点为背景,转化为前景)。三、示例代码:#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){utils::logging::setLog
- opencv学习(十一)之绘图函数
梧桐栖鸦
OpenCV基础opencv2/3基础教程opencv直线circleellipsefillpolyopencv绘图函数
opencv中提供了很多绘图函数,在进行图像处理,对感兴趣区域进行标定时,就需要利用这些绘图函数。现在集中做一个归纳介绍。1.PointPoint常用来指定一幅二维图像中的点。如Pointpt;pt.x=10;pt.y=8;或Pointpt=Point(10,8);其指向的是在图像中(10,8)位置的一个像素点。查找Point引用可以在”core.hpp”文件发现如下语句:typedefPoint
- OpenCV学习路线图
superdont
计算机视觉opencv学习人工智能
下面是针对初学者设计的一个学习路线图:第1周:计算机视觉和OpenCV概述介绍计算机视觉及其应用领域讨论OpenCV的历史、特点和工作原理OpenCV的安装和配置(Windows/Linux/macOS)了解OpenCV的基本数据结构(cv::Mat等)第2周:OpenCV基础图像的基本操作(读取、显示、保存图片)图像的属性(色彩空间、像素访问与修改)图像的几何变换(缩放、旋转、剪切)第3周:图像
- 【Opencv学习】04-图像加法
R三哥哥啊
opencvopencv学习人工智能
文章目录前言一、图像加法混合1.1代码1.2运行结果二、图像的按位运算-组合相加2.1代码2.2运行结果示例:PPT平滑切换运行结果总结前言简单说就是介绍了两张图如何组合在一起。1、混合,透明度和颜色会发生改变2、组合,叠加起来。可以改变大小。3、两张图片如何平滑切换4、学会如何裁剪图片5、明白掩码操作6、如何将图片置于左侧右侧一、图像加法混合OpenCV中的加法与Numpy的加法是有所不同的。O
- OpenCV学习笔记:如何扫描图像、利用查找表和计时
weixin_33772645
人工智能c/c++测试
目的我们将探索以下问题的答案:如何遍历图像中的每一个像素?OpenCV的矩阵值是如何存储的?如何测试我们所实现算法的性能?查找表是什么?为什么要用它?测试用例这里我们测试的,是一种简单的颜色缩减方法。如果矩阵元素存储的是单通道像素,使用C或C++的无符号字符类型,那么像素可有256个不同值。但若是三通道图像,这种存储格式的颜色数就太多了(确切地说,有一千六百多万种)。用如此之多的颜色可能会对我们的
- OpenCV学习记录——形态学处理
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、腐蚀和膨胀二、高级形态学运算三、具体应用代码前言形态学是图像处理中最常用的技术之一,它主要用于从图像中提取有意义的形状信息,例如边界和连通区域,以便后续的识别工作能够捕捉到目标对象最重要的形状特征。此外,细化、像素化和修剪毛刺等技术也常用于图像的预处理和后处理,以增强图像质量。形态学转换主要有腐蚀和膨胀、开运算和闭运算、顶帽和底帽一、腐蚀和膨胀腐蚀和膨胀是两种最基本、最重要的形态学
- opencv学习记录——(15)模板匹配
蜡笔小新qqq
opencv学习计算机视觉
一、单模板匹配#include"opencv2/opencv.hpp"#includeusingnamespacestd;usingnamespacecv;voidmain(){///单模板匹配Mattemp=imread("temp.png");//模板图像Matsrc=imread("src.png");//待搜索图像即原图imshow("temp",temp);imshow("src",sr
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- OpenCV学习记录——轮廓检测
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、寻找、绘制轮廓二、具体应用代码前言寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段,轮廓是图像中连续的边界线,可以用于物体检测、形状分析等应用。为了获取更高的准确性,会先进行二值化处理,在得到二进制图像后,寻找轮廓就是从黑色背景中找到白色物体,因此我们要找的对象应是白色,背景应该是黑色。一、寻找、绘制轮廓(一)寻找图像轮廓寻找图像轮廓函数如下:contours,hie
- OpenCV学习笔记(Python)—— 批量提取图像轮廓并保存结果到保持原始结构的输出目录
六个核桃Lu
OpenCV学习opencv人工智能python图像处理计算机视觉
批量处理图像,对每个图像提取轮廓内的区域并将轮廓外的区域设置为白色背景,然后保存处理后的图像到指定的输出目录,同时保持与输入目录相同的文件和目录结构。importcv2importnumpyasnpimportosfromtqdmimporttqdmdefprocess_image(input_path,output_path):#读取图像img=cv2.imread(input_path)ifi
- OpenCV学习记录——图像的绘制
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、绘制直线二、绘制矩形三、绘制圆形四、绘制文本前言我们在进行图像处理的过程中,通常需要进行划线、画矩形框锁定目标等操作来凸显指定目标,OpenCV提供了方便的绘图功能,可以进行直线、矩形、圆、文本文字等内容的绘制,这篇文章将记录OpenCV中图像的绘制相关内容。一、绘制直线绘制直线的函数如下:cv2.line(image,pt1,pt2,color,thickness)其中,五个参数
- OpenCV学习记录——阈值处理(全局阈值处理、自适应阈值处理)
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录一、学习目的二、图像二值化三、全局阈值处理四、自适应阈值处理一、学习目的在进行图像处理时,我们通常要进行颜色识别等一系列需要进行图像阈值处理的操作,今天我们就记录一下opencv进行阈值处理的一些基本操作和代码二、图像二值化我们首先要明白一个概念,图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0(表示黑色)和255(表示白色),可以将整个图像呈现出明显的黑白效果。最常用的方法就
- OpenCV学习记录——平滑处理
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、图像噪声二、图像平滑处理三、完整应用代码前言当我们用树莓派进行opencv图像处理时,摄像头所获取的图像质量通常会有所下降,此时,需要多种手段来优化图像的质量,提高图像识别的准度。今天所记录的是当图片经过传输等过程后出现的图像噪声现象及对应解决方法——平滑一、图像噪声在数字图像的采集、处理和传输过程中,可能会受到各种噪声的干扰,这会导致图像质量下降、图像变得模糊,甚至使图像的特征难
- OpenCV学习记录——边缘检测
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、边缘检测原理二、Canny边缘检测算法三、具体应用代码前言在做某些图像处理时,通常需要将识别到的物体边界提取出来,从而帮助我们实现目标检测,这就需要用到边缘检测,例如人脸识别和运动目标的检测都需要先进行边缘检测,这篇文章就记录一下边缘检测的原理及应用代码。一、边缘检测原理边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点,图像边缘检测大幅度地减少了
- opencv学习 机器学习
小猴啊0.0
opencv学习机器学习
Kmeansdoublecv::kmeans(InputArraydataintkInputOutputArraybestLabels//输出的所有样本的标签数组TermCriteriacriteriaintattempts//采样不同初始化标签的尝试次数intflag//中心点初始化方法,支持KMEANS_RANDOM_CENTERS//KMEANS_PP_CENTERS//KMEANS_USE
- opencv学习二值分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》二值分析:常见的二值化方法:基于全局阈值(threshold)得到的二值图像;基于自适应阈值(adaptiveThreshold)得到的二值图像;边缘检测(Canny)基于像素值范围(inRange)thresholdthresholdType介绍:THRESH_BINARY表示大于thresh的取maxval,否则取0;THRESH_BI
- 【Opencv学习】03-读取图片信息
R三哥哥啊
opencvopencv学习人工智能
前言几乎所有这些操作与Numpy的关系都比与OpenCV的关系更加紧密,因此熟练Numpy可以帮助我们写出性能更好的代码。Numpy是经过优化了的进行快速矩阵运算的软件包。所以我们不推荐逐个获取像素值并修改,这样会很慢,能有矩阵运算就不要用循环。读取像素点在计算机视觉和图像处理中,图像是由像素点组成的。每个像素点包含了颜色(在彩色图像中)和亮度(在灰度图像中)的信息。通过读取和操作这些像素点,我们
- 【Opencv学习】01-对图像进行简单的操作
R三哥哥啊
opencv学习python
首先了解一下什么是init.pyi文件文件init.pyi文件是Python中的类型提示文件,用于提供对特定包或模块的类型信息。它是类型提示的一种形式,用于描述包、模块、类、函数和变量的静态类型。在Python中,类型提示的目的是为了提供代码编辑器和静态类型检查工具更好的代码补全、类型检查和类型推断功能。init.pyi文件被放置在包或模块的目录中,并且可以包含该包或模块定义的类、函数、方法和变量
- 【Python_Opencv图像处理框架】信用卡数字识别项目
畅游星辰大海
#Python_Opencvopencvpython图像处理
写在前面本篇文章是opencv学习的第六篇文章,前面主要讲解了对图像的一些基本操作,这篇文章我们就开始大展身手,将前面所学的基础操作活学活用。既能复习基础操作,又能学到一些新的知识。作为初学者,我尽己所能,但仍会存在疏漏的地方,希望各位看官不吝指正写在中间(1)简单介绍我们通过opencv提供的一些函数,来实现基础操作,看完本篇文章,你就能轻松地将这信用卡上的数字识别出来该技术首先通过图像处理技术
- opencv学习 特征提取
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》图像金字塔略拉普拉斯金字塔对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。详情可查看https://zhuanlan.zhihu.com/p/80362140图像金字塔融合拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留
- opencv学习形态学分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》膨胀操作与腐蚀操作膨胀操作一定程度上会把相邻的对象连接起来成为一个对象;腐蚀操作会让对象面积变小或者擦除小的对象。//膨胀操作voidcv::dilate(InputArraysrcOutputArraydstInputArraykernelPointanchor=Point(-1,-1)intiterations=1intborderTy
- OpenCV学习笔记2——视频的读取与处理
风痕天际
opencv学习笔记opencv学习笔记计算机视觉音视频
目录一、视频内容读取二、将视频中的每一帧转换为灰度图三、退出程序一、视频内容读取cv2中的“VideoCapture”函数可以捕获摄像头,用数字来控制不同的设备,如果是视频文件则直接指定路径。importcv2vc=cv2.VideoCapture('1.mp4')whileTrue:ret,frame=vc.read()ifframeisNone:breakifret==True:gray=cv
- OpenCV学习笔记4——边界填充
风痕天际
opencv学习笔记opencv学习笔记
边界填充,即将图片扩大一圈。代码如下:importcv2frommatplotlibimportpyplotaspltimg=cv2.imread('3.jpg')top_size,bottom_size,left_size,right_size=(50,50,50,50)replicate=cv2.copyMakeBorder(img,top_size,bottom_size,left_size
- OpenCV学习笔记1——图像读取与信息提取
风痕天际
opencv学习笔记opencvpython计算机视觉
目录一、计算机眼中的图像二、通过代码对图像进行操作1.图像的读取2.图像的显示三、将图像读取为灰度图像四、保存图像一、计算机眼中的图像在计算机中,图像被视为一个高度×宽度的像素矩阵,每一个矩阵内存放着该像素的色彩信息。计算机中大多采用RGB颜色标准,即通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色。部分颜色对应RGB值:白色:rgb(255,255,
- opencv学习-几种角点检测方法
wyw0000
opencvopencv学习计算机视觉
角点基本概念角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界。角点检测(CornerDetection)是计算机视觉系统中获取图像特征的一种方法,广泛应用于运动检测、图像匹配、视频跟踪、三维重建和目标识别等,也可称为特征点检测。目前,角点检测算法还不是十分完善,许多算法需要依赖大量的训练集和冗余数据来防止和减少错误的特征的出现。对于角点检测算法的重要评价标准
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1