算法设计与分析--求最大子段和问题(蛮力法、分治法、动态规划法) C++实现

算法设计与分析--求最大子段和问题

问题描述:

给定由n个整数组成的序列(a1,a2, …,an),求该序列形如

   

 的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。


利用蛮力法求解:

int maxSum(int a[],int n)
{
	int maxSum = 0;
	int sum = 0;
	for(int i = 0; i < n; i++) //从第一个数开始算起
	{
		for(int j = i + 1; j < n; j++)//从i的第二个数开始算起
		{
			sum = a[i];
			a[i]  += a[j];
			if(a[i] > sum)
			{
				sum = a[i];		//每一趟的最大值
			}
		}
		if(sum > maxSum)
		{
			maxSum = sum;
		}

	}
	return maxSum;
}


利用分治法求解:

int maxSum(int a[],int left, int right)
{
	int sum = 0;
	if(left == right)	//如果序列长度为1,直接求解
	{
		if(a[left] > 0) sum = a[left];
		else sum = 0;
	}
	else 
	{
		int center = (left + right) / 2;	//划分
		int leftsum = maxSum(a,left,center);	//对应情况1,递归求解
		int rightsum = maxSum(a, center + 1, right);//对应情况2, 递归求解
		int s1 = 0;
		int lefts = 0;
		for(int i = center; i >= left; i--)	//求解s1
		{
			lefts += a[i];
			if(lefts > s1) s1 = lefts;	//左边最大值放在s1
		}
		int s2 = 0; 
		int rights = 0;
		for(int j = center + 1; j <= right; j++)//求解s2
		{
			rights += a[j];
			if(rights > s2) s2 =rights;
		}
		sum = s1 + s2;				//计算第3钟情况的最大子段和
		if(sum < leftsum) sum = leftsum;	//合并,在sum、leftsum、rightsum中取最大值
		if(sum < rightsum) sum = rightsum;
	}
	return sum;
}


利用动态规划法求解:

int DY_Sum(int a[],int n)
{
	int sum = 0;
	int *b = (int *) malloc(n * sizeof(int));	//动态为数组分配空间
	b[0] = a[0];
	for(int i = 1; i < n; i++)
	{
		if(b[i-1] > 0)
			b[i] = b[i - 1] + a[i];
		else
			b[i] = a[i];
	}
	for(int j = 0; j < n; j++)
	{
		if(b[j] > sum)
			sum = b[j];
	}
	delete []b;		//释放内存
	return sum;
}





完整测试程序:

#include
#include
#include
using namespace std;
#define MAX 10000

int BF_Sum(int a[],int n)   
{
	int max=0;     
	int sum=0;        
	int i,j;
	for (i=0;i=max)                
			{                                         
				max=sum;                
			}  
			sum+=a[j];         
		}    
	}    
	return max;
}    
int maxSum1(int a[],int left, int right)
{
	int sum = 0;
	if(left == right)	//如果序列长度为1,直接求解
	{
		if(a[left] > 0) sum = a[left];
		else sum = 0;
	}
	else 
	{
		int center = (left + right) / 2;	//划分
		int leftsum = maxSum1(a,left,center);	//对应情况1,递归求解
		int rightsum = maxSum1(a, center + 1, right);//对应情况2, 递归求解
		int s1 = 0;
		int lefts = 0;
		for(int i = center; i >= left; i--)	//求解s1
		{
			lefts += a[i];
			if(lefts > s1) s1 = lefts;	//左边最大值放在s1
		}
		int s2 = 0; 
		int rights = 0;
		for(int j = center + 1; j <= right; j++)//求解s2
		{
			rights += a[j];
			if(rights > s2) s2 =rights;
		}
		sum = s1 + s2;				//计算第3钟情况的最大子段和
		if(sum < leftsum) sum = leftsum;	//合并,在sum、leftsum、rightsum中取最大值
		if(sum < rightsum) sum = rightsum;
	}
	return sum;
}

int DY_Sum(int a[],int n)
{
	int sum = 0;
	int *b = (int *) malloc(n * sizeof(int));	//动态为数组分配空间
	b[0] = a[0];
	for(int i = 1; i < n; i++)
	{
		if(b[i-1] > 0)
			b[i] = b[i - 1] + a[i];
		else
			b[i] = a[i];
	}
	for(int j = 0; j < n; j++)
	{
		if(b[j] > sum)
			sum = b[j];
	}
	delete []b;		//释放内存
	return sum;
}

int main()
{
	int num[MAX];
	int i;
	const int n = 40;
	LARGE_INTEGER begin,end,frequency;
	QueryPerformanceFrequency(&frequency);
	//生成随机序列
	cout<<"生成随机序列:";
	srand(time(0));
	for(int i = 0; i < n; i++)
	{
		if(rand() % 2 == 0)
			num[i] = rand();
		else
			num[i] = (-1) * rand();
		if(n < 100)
			cout<

测试结果:


算法设计与分析--求最大子段和问题(蛮力法、分治法、动态规划法) C++实现_第1张图片

你可能感兴趣的:(【大学课程之算法分析与设计】)