- c++计算精解【12】
sakura_sea
物理模拟与3D计算c++开发语言
文章目录多元线性回归决定系数数学原理R2R^2R2调整R2R^2R2c++实现参考文献多元线性回归决定系数数学原理R2R^2R2R2R^2R2(决定系数)反映了自变量(输入变量)对因变量(输出变量)变异的解释能力。R2=1−SSresidualSStotalR^2=1-\frac{SS_{\text{residual}}}{SS_{\text{total}}}R2=1−SStotalSSresid
- 多元线性回归 python实现
雪可问春风
python机器学习numpy
importnumpyasnp#多元线性回归x=np.matrix([[2104,1416,1534,852,1],[5,3,3,2,1],[1,2,2,1,1],[45,40,30,36,1]])y=np.matrix([460,232,315,178])y1=np.matrix([460],[232].[315],[178])w=(x.T*x).I*x.T*yw1=(x.T*x).I*x.T*
- R实现线性回归逻辑回归
weixin_55475210
r语言线性回归逻辑回归
线性回归基本模型Y=β0+β1X1+β2X2+⋯+βmXm+ϵY=\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_mX_m+\epsilonY=β0+β1X1+β2X2+⋯+βmXm+ϵYYY为因变量X1,X2,…,XmX_1,X_2,\ldots,X_mX1,X2,…,Xm为m个自变量ϵ\epsilonϵ为残差lm()函数用于完成多元线性回归系数估计,回归系
- 2024国赛数学建模备战-数学建模思想方法大全及方法适用范围
V建模忠哥V
2024国赛数学建模
第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=uu=lnx来解决;
- Spark MLlib LinearRegression线性回归算法源码解析
SmileySure
Spark人工智能算法SparkMLlib
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2损失函数J(θ)=1/2∑mi=1(hθ(xi)−yi)2J(θ)=1/2∑i=1m(hθ(xi)−yi)2—————31/2是为了求导时系数为1,平方里是真实值减去估计值我们的目的就是求其最小值最小二乘法要求较为
- 每天一个数据分析题(二百零一)
紫色沙
数据分析题库数据分析数据挖掘
以下关于线性回归模型的经典假设,描述正确的是()。A.自变量与因变量必须有线性关系B.正交假定:扰动项与自变量不相关,期望值为0C.扰动项之间相互独立且服从方差相等的同一个正态分布D.多元线性回归中,自变量之间不能有强共线性题目来源于CDA模拟题库点击此处获取答案
- 水云模型去除植被覆盖影响反演土壤水
海绵波波107
遥感反演与解译技术笔记c#
目录水云模型简介使用方法环境配置输入文件源代码输出文件反演方法构造土壤水分与散射系数拟合方程一、Matlab拟合线性曲线二、python多元线性回归波段计算讨论本文是在哨兵1号后向散射系数土壤水分反演文章上的拓展,由于雷达后向散射系数还会受到植被覆盖、土壤粗糙度等的影响,所以雷达后向散射系数直接反演土壤水难以精确,本文使用水云模型去除植被散射影响,在此基础上更精确地反演土壤水。水云模型简介<
- 人工智能底层自行实现篇2——多元线性回归
ALGORITHM LOL
人工智能线性回归回归
2多元线性回归1.简介多元线性回归是一种统计建模方法,用于研究多个自变量与一个因变量之间的关系。它是简单线性回归的扩展,简单线性回归只涉及一个自变量和一个因变量。在多元线性回归中,我们可以使用多个自变量来预测一个因变量。多元线性回归的基本原理是通过拟合一个线性模型来描述自变量与因变量之间的关系。这个线性模型通常采用最小二乘法来估计参数,使得模型预测值与实际观测值之间的残差平方和最小化。多元线性回归
- 【机器学习】多元线性回归
Mount256
#机器学习机器学习线性回归人工智能
文章目录多元线性回归模型(multipleregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)批量梯度下降算法(batchgradientdescentalgorithm)特征工程(featureengineering)特征缩放(featurescaling)正则化线性回归(regularizationlinearregress
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 2019-12-01
xias147
利用python实现多元线性回归#-------机器学习--------1、简单一元线性回归importnumpyasnpimportmatplotlib.pyplotaspltx=np.array([1.,2.,3.,4.,5.])y=np.array([1.,3.,2.,3.,5,])plt.scatter(x,y)plt.axis([0,6,0,6])plt.show()x_mean=np.
- 线性回归算法原理及python实现
德乌大青蛙
机器学习算法python数据挖掘
文章目录引言回归与分类的区别线性回归简单线性回归原理及推导python实现算法多元线性回归原理及推导python实现算法手工实现多元线性回归算法sklearn实现多元线性回归算法引言回归与分类的区别区分回归与分类其实很简单,举个例子,预测病人患病概率,结果只有患病和不患病2种,这就是分类;预测房价,结果可能是在一段区间内,这个就是回归。线性回归线性回归是利用数理统计中回归分析方法,其本质是寻找出一
- (Ridge, Lasso) Regression
王金松
岭回归岭回归的损失函数MSE+L2岭回归还是多元线性回归y=wTx只不过损失函数MSE添加了损失项w越小越好?因为为了提高模型的泛化能力(容错能力),w越小越好因为如果x1有错,w越小,对y的影响越小但是w为0没意义,所以w要适当保证准确率的情况下提高泛化能力和容错能力多元线性回归通过MSE(最小二乘leastsquares)保证正确率但是我们还需要模型提高泛化能力提高泛化能力min((y-y_h
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 04 多元线性回归
凡有言说
1.多元线性回归模型一般的多元线性回归模型可以写为:多元线性回归模型因为在绝大数情况下,回归方程都是有常数,我们可以令xi1=1,则上式可以简化为:多元线性回归模型上式又可以用向量来表示:多元线性回归模型全部写出来有如下:多元线性回归模型其中矩阵X为:X矩阵如此便得到了一般多元线性回归模型的向量形式2.OLS估计量的推导我们的目标函数依旧是最小化残差平方和,寻找最佳拟合的回归超平面。目标函数为:目
- 正态性检验,多元线性和多项式回归,输出具体的回归函数
huxuanlai
数据挖掘和统计建模
一、业务场景:1.一个汽车销售公司,其客户来店消费金额是否符合正态分布?答:这个问题可以抽象为统计学的统计推断中的假设检验部分的正态性检验。2.如何模拟这些数据的函数特征,怎么看拟合的好不好?答:这是个拟合问题,视情况用线性拟合和多项式拟合来拟合。通过拟合打分看拟合效果。3.这个具体函数能否给出来?答:可以。二、下面分四部分来用代码解决上述问题1.对数据做正态性判断2.对数据做多元线性回归3.对数
- 【机器学习笔记】回归算法
住在天上的云
机器学习笔记回归线性回归人工智能
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
- MATLAB实现多元线性回归数学建模算法
AI Dog
数学建模\MATLAB数学建模算法matlab线性回归数据挖掘
多元线性回归是指在一个多维特征空间中,通过线性模型来拟合输入特征与输出之间的关系。多元线性回归的数学表达式为:y=β0+β1x1+β2x2+…+βnxn+ε其中,y为输出变量,x1,x2,…,xn为输入变量,β0,β1,β2,…,βn为回归系数,ε为误差项。通过最小化误差项的平方和来确定回归系数的值,通常使用最小二乘法来求解。多元线性回归可以用于解决多个自变量对因变量的影响问题,它可以用于预测和建
- MATLAB实现偏最小二乘回归(PLSR)数学建模算法
AI Dog
数学建模\MATLAB算法matlab回归数学建模数据挖掘
偏最小二乘回归(PartialLeastSquaresRegression,简称PLS回归)是一种多元回归分析方法,用于处理具有多重共线性和高维数据的情况。它结合了主成分分析和多元线性回归的特点,旨在降低预测模型中的自变量之间的共线性,并通过捕捉自变量和因变量之间的主要关系来建立模型。PLS回归的核心思想是通过找到一组新的变量(称为部分最小二乘变量或PLS成分),这些新变量是原始自变量的线性组合,
- Python 散点图线性拟合_线性回归(实战)
weixin_39929595
Python散点图线性拟合python线性回归统计检验p值线性回归系数的标准误
前面介绍了线性回归的理论知识后,有些朋友建议我写一篇实战篇,这样可以方便理解。今天我们就来使用Python实现多元线性回归模型的落地。本次数据集如下链接:https://pan.baidu.com/s/16w8-snxnTKtU3boAJGN1Cgpan.baidu.com提取码:3udf各个变量解释为AT:温度V:压力AP:相对湿度RH:排气量PE:发电量(因变量)下面正式开始吧!1,导入包#导
- 彻底学会系列:一、机器学习之线性回归(二)
挑大梁
#机器学习机器学习线性回归人工智能
0.概念和公式请参考:一、机器学习之线性回归(一)1.涉及公式1.1简单线性回归y=wx+by=wx+by=wx+b1.2多元线性回归y^=w1X1+w2X2...wnXn+w0\haty=w_1X_1+w_2X_2...w_nX_n+w_0y^=w1X1+w2X2...wnXn+w0向量表示:y^=WTX\haty=W^TXy^=WTX1.3高斯密度函数f(x;μ,σ2)=12πσexp(−(
- OpenCV与机器学习:使用opencv和sklearn实现线性回归
艾醒(AiXing-w)
OpenCV机器学习机器学习opencvsklearn
前言线性回归是一种统计分析方法,用于确定两种或两种以上变量之间相互依赖的定量关系。在统计学中,线性回归利用线性回归方程(最小二乘函数)对一个或多个自变量(特征值)和因变量(目标值)之间的关系进行建模。线性回归主要分为一元线性回归和多元线性回归。一元线性回归涉及两个变量,其关系可以用一条直线近似表示。而多元线性回归则涉及两个或两个以上的自变量,因变量和自变量之间是线性关系。线性回归的目标是找到一个数
- 每天一个数据分析题(一百五十一)
紫色沙
数据分析题库数据分析数据挖掘
在多元线性回归模型中,自变量的选取方法中向前回归法的特点是什么?A.它从完整模型开始,逐步剔除对模型贡献不显著的变量。B.它首先将所有变量包含在模型中,然后逐个检验每个变量的显著性。C.它从没有任何自变量的模型开始,逐步添加每次增加最多解释力度的变量。D.它通过逐步地添加和删除变量来决定哪些变量应该包含在模型中。题目来源于CDA模拟题库点击此处获取答案
- 机器学习本科课程 实验1 线性模型
11egativ1ty
机器学习本科课程机器学习人工智能
第三章线性模型3.1一元线性回归3.2多元线性回归3.3对数几率回归,线性判别分析(二选一)3.4类别不均衡3.1一元线性回归——Kaggle房价预测使用Kaggle房价预测数据集:打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集分别以LotArea,BsmtUnfSF,GarageArea三种特征作为模型的输入,SalePrice作为模型的输出在训练集上,使用最小二乘法求解模型
- 第6章 多元线性回归
流焱之舞
一、遗漏变量偏差遗漏变量偏差是指OLS估计量中存在的偏差,它是在回归变量与遗漏变量相关时产生的。遗漏变量偏差意味着第一个最小二乘假设不成立。其理由如下:由前知一元线性回归模型中的误差项表示除了之外所有决定的因素。若其中某个因素与相关,则意味着误差项与相关。令和的相关系数为,第一个假设不成立而第二个和第三个假设成立,则OLS估计量具有如下极限:(1)无论样本容量是大还是小,遗漏变量偏差问题都存在。(
- java移位运算 cpu gpu_ND4J求多元线性回归以及GPU和CPU计算性能对比
zhuyuejituan
java移位运算cpugpu
上一篇博客《梯度下降法求多元线性回归及Java实现》简单了介绍了梯度下降法,并用Java实现了一个梯度下降法求回归的例子。本篇博客,尝试用dl4j的张量运算库nd4j来实现梯度下降法求多元线性回归,并比较GPU和CPU计算的性能差异。一、ND4J简介ND4J是DL4J提供的张量运算库,提供了多种张量运算的封装,以下内容复杂于ND4J官网:ND4J和ND4S是JVM的科学计算库,并为生产环境设计,亦
- 2018-12-06多元线性回归
奈何qiao
具有多个变量的线性回归也称为“多元线性回归”。多变量示例多个特征的假设函数的多变量形式如下:多变量的假设函数上述的式子如果以房价为例,可以看成房子的基本价格;是每平方米的价格;为每层楼的价格...;是房屋内的平方米数;是楼层数目...使用矩阵乘法的定义,我们的多变量假设函数可以简洁地表示为(我们额外将设为1):如此的设置可以让和进行矩阵运算。多特征假设函数的矢量化(多元线性回归)
- 【机器学习 & 深度学习】卷积神经网络简述
为梦而生~
机器学习深度学习机器学习人工智能深度学习神经网络cnn计算机视觉自然语言处理
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!相对完整的机器学习基础教学!⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】一元线性回归(适合初学者的保姆级文章)【机器学习基础】多元线性回归(适合初学者的保姆级文章)【机器学习基础】决策树(
- 机器学习4-多元线性回归
dracularking
机器学习机器学习线性回归人工智能
多元线性回归(MultipleLinearRegression)是线性回归的一种扩展形式,用于建立因变量与多个自变量之间的关系。在简单线性回归中,我们考虑一个因变量和一个自变量之间的线性关系,而多元线性回归允许我们考虑多个自变量对因变量的影响。一般的多元线性回归模型的数学表达式如下:其中:Y是因变量(要预测的目标)。X1,X2,…,Xn是自变量(特征)。β0是截距(模型在X1,X2,…,Xn都为0
- 机器学习:多项式回归(Python)
捕捉一只Diu
机器学习回归python笔记
多元线性回归闭式解:closed_form_sol.pyimportnumpyasnpimportmatplotlib.pyplotaspltclassLRClosedFormSol:def__init__(self,fit_intercept=True,normalize=True):""":paramfit_intercept:是否训练bias:paramnormalize:是否标准化数据""
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite