Part 1:
For each of the four datasets…
Compute the mean and variance of both x and y
Compute the correlation coefficient between x and y
Computethe linear regression line: y=β0+β1x+ϵy=β0+β1x+ϵ (hint: use statsmodels andlook at the Statsmodels notebook)
Part 2:
Using Seaborn, visualize all four datasets.
hint: use sns.FacetGrid combined with plt.scatter
Part1 代码:
import random
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
sns.set_context("talk")
anscombe = pd.read_csv('anscombe.csv')
mx = anscombe.groupby('dataset').mean().x
my = anscombe.groupby('dataset').mean().y
vx = anscombe.groupby('dataset').var().x
vy = anscombe.groupby('dataset').var().y
print('x mean : \n', mx, '\n')
print('y mean : \n', my, '\n')
print('x var : \n', vx, '\n')
print('y var : \n', vy, '\n')
cor = anscombe.groupby('dataset').corr()
print('correlation : \n', cor, '\n')
for a in [anscombe[anscombe.dataset == i] for i in ['I', 'II', 'III', 'IV']]:
s_x = sm.add_constant(np.array(a.x))
s_y = np.array(a.y)
beta_pair = sm.OLS(s_y, s_x).fit()
print('β1, β0 = ', beta_pair.params)
运行结果:
x mean :
dataset
I 9.0
II 9.0
III 9.0
IV 9.0
Name: x, dtype: float64
y mean :
dataset
I 7.500909
II 7.500909
III 7.500000
IV 7.500909
Name: y, dtype: float64
x var :
dataset
I 11.0
II 11.0
III 11.0
IV 11.0
Name: x, dtype: float64
y var :
dataset
I 4.127269
II 4.127629
III 4.122620
IV 4.123249
Name: y, dtype: float64
correlation :
x y
dataset
I x 1.000000 0.816421
y 0.816421 1.000000
II x 1.000000 0.816237
y 0.816237 1.000000
III x 1.000000 0.816287
y 0.816287 1.000000
IV x 1.000000 0.816521
y 0.816521 1.000000
β1, β0 = [3.00009091 0.50009091]
β1, β0 = [3.00090909 0.5 ]
β1, β0 = [3.00245455 0.49972727]
β1, β0 = [3.00172727 0.49990909]
Part2 代码:
import random
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
sns.set_context("talk")
anscombe = pd.read_csv('anscombe.csv')
mx = anscombe.groupby('dataset').mean().x
my = anscombe.groupby('dataset').mean().y
vx = anscombe.groupby('dataset').var().x
vy = anscombe.groupby('dataset').var().y
print('x mean : \n', mx, '\n')
print('y mean : \n', my, '\n')
print('x var : \n', vx, '\n')
print('y var : \n', vy, '\n')
cor = anscombe.groupby('dataset').corr()
print('correlation : \n', cor, '\n')
for a in [anscombe[anscombe.dataset == i] for i in ['I', 'II', 'III', 'IV']]:
s_x = sm.add_constant(np.array(a.x))
s_y = np.array(a.y)
beta_pair = sm.OLS(s_y, s_x).fit()
print('β1, β0 = ', beta_pair.params)
temp = sns.FacetGrid(data=anscombe, col='dataset', col_wrap=4)
temp.map(plt.scatter, 'x', 'y')
plt.show()
运行结果图: