欧氏空间与非欧氏空间

欧氏空间

约在公元前300年,古希腊数学家欧几里德建立了角和空间中距离之间联系的法则,现称为欧几里德几何。欧几里德首先开创了处理平面上二维物体的平面几何,接着分析三维物体的立体几何,所有欧几里德的公理已被编排到叫做二维或三维欧几里德空间的抽象数学空间中。

这些数学空间可以被扩展而应用于任何有限维度,这种空间叫做n维欧几里德空间(简称n维空间)或有限维实内积空间

简单来说,欧式空间就是二维空间三维空间以及继承三维空间定理的N维空间

非欧氏空间

爱因斯坦曾经形象地比喻过非欧几何

假设有一种生活在二维平面的生物,但它们不是生活在绝对的平面上,而是生活在一个球面上,那么,当它们在小范围内研究圆周率的时候,会像我们一样发现圆周率是3.1415926……

但是,如果它们画一个很大的圆,去测量圆的周长和半径,就会发现周长小于2πr,圆越大,周长比2πr小得越多。为了能够适用于大范围的研究,它们就必须修正它们的几何方法。

如果空间有四维,而我们生活的三维空间在空间的第四个维度中发生了弯曲,那我们的几何就必须进行修正,这就是非欧几何。在非欧几何中,平行的直线只在局部平行,就像地球的经线只在赤道上平行一样。

二维生物画圆的解释如下:
欧氏空间与非欧氏空间_第1张图片

你可能感兴趣的:(数学基础,几何学)