LeetCode 数字三角形最小路径和问题

题目描述:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

 

The minimum path sum from top to bottom is11(i.e., 2 +3 + 5 + 1 = 11).

Note: 
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

上述三角形

2

3  4

6  5  7

4  1  8  3

 这是一道动态规划的题目,从顶往下,求该数字三角形的最小路径和,下一层只能选择与当该数字相邻的数字,上述最优解 2+3+5+1=11。求解过程中要处理数组越界问题。

状态转移方程的确定:

由于当前最小路径和只由上一层相邻的两个数确定,若a[i][j]的值表示为a[0][0]到a[i][j]的最小路径和。那么它可表示为:

     a[i][j] += min(a[i-1][j],a[i-1][j-1]);

    需要处理 j=0 和 j=i(当前行第一列和最后一列)

class Solution {
public:
    int minimumTotal(vector > &triangle){
        int n = triangle.size();
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j <= i; j++) 
            {
                if(j == 0)                        //j为第一列
                    triangle[i][j] += triangle[i-1][j]; 
                else if(j == i)                    //当前行的最后一列
                    triangle[i][j] += triangle[i-1][j-1];
                else
                {
                    if(triangle[i-1][j]

方法二:从下往上

a[i][j] += min(a[i+1][j],a[i+1][j+1]);

class Solution {
	public:
    int minimumTotal(vector > &triangle) 
	{
		for(int i = triangle.size()-2; i >= 0; --i)		//i从倒数第二行开始 
			for(int j = 0; j <= i; ++j)
			{
				if(triangle[i+1][j+1]>triangle[i+1][j])		
                	triangle[i][j] += triangle[i+1][j];
           		else
               	 	triangle[i][j] += triangle[i+1][j+1];
        	}
   		 return triangle[0][0];
    }
};

你可能感兴趣的:(【leetcode】)