- 《机器学习数学基础》补充资料:什么是随机变量
CS创新实验室
机器学习数学基础机器学习人工智能数学概率
卓永鸿提供本文介绍什么是随机变量及为什么要发展此种概念。我们先来看这个问题:一个边长为aaa的正三角形,CCC为其外接圆,外接圆半径为RRR。若在圆内随机作一弦,则弦长lll大于aaa的概率为何?法1:随机半径法先拉出一条圆半径,然后随机在半径上取一点,再画出通过此点并垂直半径的弦。易知当弦心距小于R/2R/2R/2时,弦长lll大于aaa,故概率为1/21/21/2。法2:随机端点法在圆周上随机
- 机器学习的一百个概念(12)学习率
Shockang
机器学习的一百个概念机器学习人工智能
前言本文隶属于专栏《机器学习的一百个概念》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见[《机器学习的一百个概念》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang思维导图基础概念:学习率在机器学习中的重要性与发展历程|在机器学习这片广袤的领域中,学习率(Learn
- 机器学习的一百个概念(10)假阳性率
Shockang
机器学习的一百个概念机器学习人工智能
前言本文隶属于专栏《机器学习的一百个概念》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见[《机器学习的一百个概念》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文1.引言在机器学习的广阔天地中,模型评估指标是我们理解和优化模型的重要工具。其中,假阳性率(Fal
- AI工程师成长指南:从入门到精通的完整路线图
赛博AI Lewis
人工智能
AI工程师RoadmapAI工程师成长指南:从入门到精通的完整路线图随着人工智能技术的快速发展,AI工程师已成为全球科技行业的热门职业。本文基于行业标准Roadmap,结合核心技能与实战经验,为你梳理一条清晰的成长路径,助你从零基础迈向专业领域。一、夯实基础:数学、编程与机器学习数学基础线性代数:矩阵运算、特征值分解是深度学习模型(如神经网络)的核心数学工具。概率统计:贝叶斯推断、假设检验为模型评
- 向量空间与范数
Shockang
机器学习数学通关指南人工智能机器学习数学线性代数
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文一、向量空间:机器学习的舞台1.1定义与核心要素️向量空间是机器学习的数学基础,它提供了描述和处理高
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- 机器学习数学基础:29.t检验
@心都
机器学习人工智能
一、t检验的定义与核心思想(一)定义t检验(Student’st-test)是一种在统计学领域中广泛应用的基于t分布的统计推断方法。其主要用途在于判断样本均值与总体均值之间,或者两个独立样本的均值之间、配对样本的均值之间是否存在显著差异。例如,在教育研究中,可以通过t检验判断某个班级学生的平均成绩与全校学生的平均成绩是否有显著差异;在医学实验里,可用于比较实验组和对照组的患者某项生理指标的均值是否
- 核函数及其常见类型
Shockang
机器学习数学通关指南机器学习人工智能数学线性代数概率统计
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文核心概念核函数(KernelFunction)是机器学习中处理非线性可分数据的关键工具。它的核心思想是隐式映射:通过将数据从原始低维空间映射到高维空间,使得在高维空间中线性可分,从而无需显式计算高维映射,仅需在低维空间高效计算
- 二维随机变量
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.二维随机变量基础1.1基本定义二维随机变量(X,Y)(X,Y)(X,Y)是由两个定义在同一概率空间上的随机变量XXX和YYY组成的向量样本空间:每个试验结果e∈Se\inSe∈S对应到平面上的一个点(X(e),Y(e))(
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- 正交投影与内积空间:机器学习的几何基础
Shockang
机器学习数学通关指南机器学习人工智能线性代数数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.内积空间的数学定义1.1代数定义✏️两个维度相同的向量a=[a1,…,an]\mathbf{a}=[a_1,\dots,a_n]a=[a1,…,an]和b=[b1,…,bn]\mathbf{b}=[b_1,\dots,b_
- 特征值与特征向量
Shockang
机器学习数学通关指南机器学习线性代数矩阵数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一、定义与数学表达特征向量:对于方阵AAA,若存在非零向量v\mathbf{v}v满足Av=λvA\mathbf{v}=\lambda\mathbf{v}Av=λv,则v\mathbf{v}v称为AAA的特征向量。特征值:对应
- 机器学习数学基础:32.复本信度
@心都
机器学习算法人工智能
复本信度(Parallel-FormsReliability)深度详解教程专为小白打造,零基础也能轻松掌握一、深度解读复本信度复本信度,也被称为“平行测验信度”,其核心要义是借助两个虽然不同但在各方面等效的测验版本,对同一批受测者进行多次测量,然后对测量结果的一致性程度展开评估。从本质上讲,它是衡量测验稳定性的重要指标,能够有效减少因题目重复出现而致使受测者产生练习或记忆效应,进而影响测验结果真实
- 机器学习数学通关指南——牛顿-莱布尼茨公式
Shockang
机器学习数学通关指南机器学习数学微积分
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一句话总结∫abf(x) dx=F(b)−F(a)\int_{a}^{b}f(x)\,dx=F(b)-F(a)∫abf(x)dx=F(b)−F(a)其中,F(x)F(x)F(x)是f(x)f(x)f(x)的一个原函数(即F′(
- 机器学习数学基础:36.φ相关系数分析
@心都
机器学习人工智能
用φ相关系数分析性别与心理测验态度关系的教程一、学习目标学会使用φ相关系数分析两个二分变量(如性别男/女、对心理测验态度肯定/否定)之间的关系,并通过卡方检验判断结果是否具有统计学意义。二、数据准备假设我们想研究青年大学生的性别和对心理测验的态度之间的关系,收集到如下2×22×22×2列联表数据(调查了170170170人):肯定否定合计男生222222888888110110110女生18181
- 机器学习数学基础:37.偏相关分析
@心都
机器学习人工智能
偏相关分析教程一、偏相关分析是什么在很多复杂的系统中,比如地理系统,会有多个要素相互影响。偏相关分析就是在这样多要素构成的系统里,不考虑其他要素的干扰,专门去研究两个要素之间关系紧密程度的一种方法。用来衡量这种紧密程度的数值,叫做偏相关系数。举个简单例子,在研究一个地区的房价时,房价会受到很多因素影响,像地段、房屋面积、周边配套设施等。如果我们想知道单纯的房屋面积和房价之间的关系,就可以用偏相关分
- 机器学习数学基础:22.对称矩阵的对角化
@心都
机器学习矩阵概率论
一、核心概念详解(一)内积定义与公式:在nnn维向量空间中,对于向量x⃗=(x1,x2,⋯ ,xn)\vec{x}\=(x_1,x_2,\cdots,x_n)x=(x1,x2,⋯,xn)和y⃗=(y1,y2,⋯ ,yn)\vec{y}\=(y_1,y_2,\cdots,y_n)y=(y1,y2,⋯,yn),内积记作(x⃗,y⃗)(\vec{x},\vec{y})(x,y),其计算公式为(x⃗,y⃗
- 机器学习数学基础:34.点二列
@心都
机器学习概率论人工智能
点二列相关教程一、点二列相关的定义点二列相关是一种统计方法,用于衡量两个变量之间的相关程度。在这种相关分析中,一个变量是正态连续性变量,取值可以是连续的数值,比如身高、体重、考试分数等;另一个是真正的二分名义变量,其两个类别是天然存在、相互独立的,不能再细分,像性别(男/女)、是否吸烟(是/否)、抛硬币的结果(正面/反面)等。二、适用场景点二列相关常用于研究天然二分变量与连续变量之间的关系。例如在
- 机器学习数学通关指南——微积分基本概念
Shockang
机器学习数学通关指南机器学习微积分数学
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文函数一、函数的定义与本质映射关系:函数是实数集到实数集的映射(或更一般地,非空数集到数集的映射)。规范形式:f:D→Rf:D\to\mathbb{R}f:D→R,其中D⊆RD\subseteq\mathbb{R}D⊆R为定义域
- 《机器学习数学基础》补充资料:四元数、点积和叉积
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》第1章1.4节介绍了内积、点积的有关概念,特别辨析了内积空间、欧几里得空间;第4章4.1.1节介绍了叉积的有关概念;4.1.2节介绍了张量积(也称外积)的概念。以上这些内容,在不同资料中,所用术语的含义会有所差别,读者阅读的时候,不妨注意,一般资料中,都是在欧几里得空间探讨有关问题,并且是在三维的欧氏空间中,其实质所指即相同。但是,如果不是在欧氏空间中,各概念、术语则不能混用。
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 机器学习数学基础:20.方程组解的结构
@心都
机器学习数学基础机器学习人工智能
一、教程简介本教程专门为线性代数零基础的小白打造,旨在全面且细致地讲解解方程组与基础解系的相关知识,助力大家逐步扎实地掌握这一重要内容板块。二、知识目标透彻理解非齐次与齐次线性方程组的定义、本质区别以及对应的解法。熟练掌握判断方程组解的存在性的方法,精准把握秩在其中起到的决定性作用。能够独立且准确地求解齐次线性方程组,并规范地表示出其通解。精通判断一个向量组是否为齐次线性方程组的基础解系的方法,并
- 机器学习数学基础:18.向量组及其线性组合
@心都
机器学习数学基础机器学习概率论线性代数
向量组与线性表示:案例与教程详解一、基础概念(一)向量组向量组是若干同位数列向量组成的集合。比如在平面直角坐标系中,向量组{α⃗1=[10],α⃗2=[01]}\{\vec{\alpha}_1\=\begin{bmatrix}1\\0\end{bmatrix},\vec{\alpha}_2\=\begin{bmatrix}0\\1\end{bmatrix}\}{α1=[10],α2=[01]},这
- 机器学习数学基础:8.泰勒公式
@心都
机器学习数学基础机器学习人工智能
一、泰勒公式的由来:为啥我们需要它?同学们,想象一下,你拿到了一块超级复杂、弯弯曲曲,就像一团乱麻似的拼图(假设这拼图代表一个复杂函数,比如一条有各种起伏的波浪线),而你手头只有一些简单的积木块(这里的积木块就是多项式啦),现在要你用这些简单积木拼出拼图的模样,是不是感觉无从下手?这时候,泰勒公式就像一位智慧的导师闪亮登场,它会告诉你:“别慌,孩子,我来教你怎么挑选积木块,怎么决定它们的形状和大小
- 机器学习数学基础:3.偏导数
@心都
机器学习数学基础机器学习人工智能
偏导数教程一、偏导数的引入在我们研究一元函数y=f(x)y=f(x)y=f(x)时,导数y′=f′(x)y^\prime=f^\prime(x)y′=f′(x)表示函数yyy关于xxx的变化率。然而,当我们遇到多元函数,例如二元函数z=f(x,y)z=f(x,y)z=f(x,y)时,情况变得更加复杂。我们可能会想知道函数zzz在xxx方向或yyy方向上的变化率,这就引入了偏导数的概念。二、偏导数的
- 机器学习数学基础:2.连续性与导数
@心都
机器学习数学基础机器学习概率论人工智能
函数连续性、瞬时速度、导数相关知识一、函数连续性(一)函数在某点连续的条件有定义:函数在点x0x_0x0处要有明确、确定的值f(x0)f(x_0)f(x0)。例如,f(x)=1xf(x)=\frac{1}{x}f(x)=x1在x=0x=0x=0处无定义,不满足此条件,所以在x=0x=0x=0处不连续。极限存在:当xxx从x0x_0x0左侧(x→x0−x\tox_0^{-}x→x0−)和右侧(x→x
- 机器学习数学基础:19.线性相关与线性无关
@心都
机器学习数学基础机器学习概率论线性代数
一、线性相关与线性无关的定义(一)线性相关想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组α⃗1,α⃗2,⋯ ,α⃗m\vec{\alpha}_1,\vec{\alpha}_2,\cdots,\vec{\alpha}_mα1,α2,⋯,αm,如果能找到不全为零的数k1,k2,⋯ ,kmk_1,k_2,\cdots,k_mk1,k2,⋯,km,让k1α⃗1+k2α⃗2
- 机器学习数学基础:14.矩阵的公式
@心都
机器学习数学基础机器学习矩阵人工智能
1.操作顺序可交换对于矩阵AAA,若存在两种运算???和???,使得(A?)?=(A?)?(A^{?})^{?}\=(A^{?})^{?}(A?)?=(A?)?,这意味着这两种运算的顺序可以交换。由此我们得到以下三个重要等式:(A∗)−1=(A−1)∗(A^{*})^{-1}\=(A^{-1})^{*}(A∗)−1=(A−1)∗:已知伴随矩阵与逆矩阵的关系A∗=∣A∣A−1A^{*}\=|A|A^
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后