这系列相关博客,参考 设计模式之美
在上一节课中,我们学习了单一职责原则。今天,我们来学习 SOLID 中的第二个原则:开闭原则。我个人觉得,开闭原则是 SOLID 中最难理解、最难掌握,同时也是最有用的一条原则。
之所以说这条原则难理解,那是因为,“怎样的代码改动才被定义为‘扩展’?怎样的代码改动才被定义为‘修改’?怎么才算满足或违反‘开闭原则’?修改代码就一定意味着违反‘开闭原则’吗?”等等这些问题,都比较难理解。
之所以说这条原则难掌握,那是因为,“如何做到‘对扩展开发、修改关闭’?如何在项目中灵活地应用‘开闭原则’,以避免在追求扩展性的同时影响到代码的可读性?”等等这些问题,都比较难掌握。
之所以说这条原则最有用,那是因为,扩展性是代码质量最重要的衡量标准之一。在 23种经典设计模式中,大部分设计模式都是为了解决代码的扩展性问题而存在的,主要遵从的设计原则就是开闭原则。
所以说,今天的内容非常重要,希望你能集中精力,跟上我的思路,将开闭原则理解透彻,这样才能更好地理解后面章节的内容。话不多说,让我们正式开始今天的学习吧!
开闭原则的英文全称是 Open Closed Principle,简写为 OCP。它的英文描述是:software entities (modules, classes, functions, etc.) should be open for extension, but closed for modification。我们把它翻译成中文就是:软件实体(模块、类、方法等)应该“对扩展开放、对修改关闭”。
这个描述比较简略,如果我们详细表述一下,那就是,添加一个新的功能应该是,在已有代码基础上扩展代码(新增模块、类、方法等),而非修改已有代码(修改模块、类、方法等)。
为了让你更好地理解这个原则,我举一个例子来进一步解释一下。这是一段 API 接口监控告警的代码。
其中,AlertRule 存储告警规则,可以自由设置。Notification 是告警通知类,支持邮件、短信、微信、手机等多种通知渠道。NotificationEmergencyLevel 表示通知的紧急程度,包括 SEVERE(严重)、URGENCY(紧急)、NORMAL(普通)、TRIVIAL(无关紧要),不同的紧急程度对应不同的发送渠道。关于 API 接口监控告警这部分,更加详细的业务需求分析和设计,我们会在后面的设计模式模块再拿出来进一步讲解,这里你只要简单知道这些,就够我们今天用了。
public class Alert {
private AlertRule rule;
private Notification notification;
public Alert(AlertRule rule, Notification notification) {
this.rule = rule;
this.notification = notification;
}
public void check(String api, long requestCount, long errorCount, long dur
long tps = requestCount / durationOfSeconds;
if (tps > rule.getMatchedRule(api).getMaxTps()) {
notification.notify(NotificationEmergencyLevel.URGENCY, "...");
}
if (errorCount > rule.getMatchedRule(api).getMaxErrorCount()) {
notification.notify(NotificationEmergencyLevel.SEVERE, "...");
}
}
}
上面这段代码非常简单,业务逻辑主要集中在 check() 函数中。当接口的 TPS 超过某个预先设置的最大值时,以及当接口请求出错数大于某个最大允许值时,就会触发告警,通知接口的相关负责人或者团队。
现在,如果我们需要添加一个功能,当每秒钟接口超时请求个数,超过某个预先设置的最大阈值时,我们也要触发告警发送通知。这个时候,我们该如何改动代码呢?主要的改动有两处:第一处是修改 check() 函数的入参,添加一个新的统计数据 timeoutCount,表示超时接口请求数;第二处是在 check() 函数中添加新的告警逻辑。具体的代码改动如下所示:
public class Alert {
// ... 省略 AlertRule/Notification 属性和构造函数...
// 改动一:添加参数 timeoutCount
public void check(String api, long requestCount, long errorCount, long tim
long tps = requestCount / durationOfSeconds;
if (tps > rule.getMatchedRule(api).getMaxTps()) {
notification.notify(NotificationEmergencyLevel.URGENCY, "...");
}
if (errorCount > rule.getMatchedRule(api).getMaxErrorCount()) {
notification.notify(NotificationEmergencyLevel.SEVERE, "...");
}
// 改动二:添加接口超时处理逻辑
long timeoutTps = timeoutCount / durationOfSeconds;
if (timeoutTps > rule.getMatchedRule(api).getMaxTimeoutTps()) {
notification.notify(NotificationEmergencyLevel.URGENCY, "...");
}
}
}
这样的代码修改实际上存在挺多问题的。一方面,我们对接口进行了修改,这就意味着调用这个接口的代码都要做相应的修改。另一方面,修改了 check() 函数,相应的单元测试都需要修改(关于单元测试的内容我们在重构那部分会详细介绍)。
上面的代码改动是基于“修改”的方式来实现新功能的。如果我们遵循开闭原则,也就是“对扩展开放、对修改关闭”。那如何通过“扩展”的方式,来实现同样的功能呢?
我们先重构一下之前的 Alert 代码,让它的扩展性更好一些。重构的内容主要包含两部分:
第一部分是将 check() 函数的多个入参封装成 ApiStatInfo 类;
第二部分是引入 handler 的概念,将 if 判断逻辑分散在各个 handler 中。
具体的代码实现如下所示:
public class Alert {
private List<AlertHandler> alertHandlers = new ArrayList<>();
public void addAlertHandler(AlertHandler alertHandler) {
this.alertHandlers.add(alertHandler);
}
public void check(ApiStatInfo apiStatInfo) {
for (AlertHandler handler : alertHandlers) {
handler.check(apiStatInfo);
}
}
}
public class ApiStatInfo {// 省略 constructor/getter/setter 方法
private String api;
private long requestCount;
private long errorCount;
private long durationOfSeconds;
}
public abstract class AlertHandler {
protected AlertRule rule;
protected Notification notification;
public AlertHandler(AlertRule rule, Notification notification) {
this.rule = rule;
this.notification = notification;
}
public abstract void check(ApiStatInfo apiStatInfo);
}
public class TpsAlertHandler extends AlertHandler {
public TpsAlertHandler(AlertRule rule, Notification notification) {
super(rule, notification);
}
@Override
public void check(ApiStatInfo apiStatInfo) {
long tps = apiStatInfo.getRequestCount()/ apiStatInfo.getDurationOfSecon
if (tps > rule.getMatchedRule(apiStatInfo.getApi()).getMaxTps()) {
notification.notify(NotificationEmergencyLevel.URGENCY, "...");
}
}
}
public class ErrorAlertHandler extends AlertHandler {
public ErrorAlertHandler(AlertRule rule, Notification notification){
super(rule, notification);
}
@Override
public void check(ApiStatInfo apiStatInfo) {
if (apiStatInfo.getErrorCount() > rule.getMatchedRule(apiStatInfo.getApi
notification.notify(NotificationEmergencyLevel.SEVERE, "...");
}
}
}
上面的代码是对 Alert 的重构,我们再来看下,重构之后的 Alert 该如何使用呢?具体的使用代码我也写在这里了。
其中,ApplicationContext 是一个单例类,负责 Alert 的创建、组装(alertRule 和notification 的依赖注入)、初始化(添加 handlers)工作。
public class ApplicationContext {
private AlertRule alertRule;
private Notification notification;
private Alert alert;
public void initializeBeans() {
alertRule = new AlertRule(/*. 省略参数.*/); // 省略一些初始化代码
notification = new Notification(/*. 省略参数.*/); // 省略一些初始化代码
alert = new Alert();
alert.addAlertHandler(new TpsAlertHandler(alertRule, notification));
alert.addAlertHandler(new ErrorAlertHandler(alertRule, notification));
}
public Alert getAlert() { return alert; }
// 饿汉式单例
private static final ApplicationContext instance = new ApplicationContext(
private ApplicationContext() {
instance.initializeBeans();
}
public static ApplicationContext getInstance() {
return instance;
}
}
public class Demo {
public static void main(String[] args) {
ApiStatInfo apiStatInfo = new ApiStatInfo();
// ... 省略设置 apiStatInfo 数据值的代码
ApplicationContext.getInstance().getAlert().check(apiStatInfo);
}
}
现在,我们再来看下,基于重构之后的代码,如果再添加上面讲到的那个新功能,每秒钟接口超时请求个数超过某个最大阈值就告警,我们又该如何改动代码呢?主要的改动有下面四处。
改动之后的代码如下所示:
public class Alert { // 代码未改动... }
public class ApiStatInfo {// 省略 constructor/getter/setter 方法
private String api;
private long requestCount;
private long errorCount;
private long durationOfSeconds;
private long timeoutCount; // 改动一:添加新字段
}
public abstract class AlertHandler { // 代码未改动... }
public class TpsAlertHandler extends AlertHandler {// 代码未改动...}
public class ErrorAlertHandler extends AlertHandler {// 代码未改动...}
// 改动二:添加新的 handler
public class TimeoutAlertHandler extends AlertHandler {// 省略代码...}
public class ApplicationContext {
private AlertRule alertRule;
private Notification notification;
private Alert alert;
public void initializeBeans() {
alertRule = new AlertRule(/*. 省略参数.*/); // 省略一些初始化代码
notification = new Notification(/*. 省略参数.*/); // 省略一些初始化代码
alert = new Alert();
alert.addAlertHandler(new TpsAlertHandler(alertRule, notification));
alert.addAlertHandler(new ErrorAlertHandler(alertRule, notification));
// 改动三:注册 handler
alert.addAlertHandler(new TimeoutAlertHandler(alertRule, notification));
}
//... 省略其他未改动代码...
}
public class Demo {
public static void main(String[] args) {
ApiStatInfo apiStatInfo = new ApiStatInfo();
// ... 省略 apiStatInfo 的 set 字段代码
apiStatInfo.setTimeoutCount(289); // 改动四:设置 tiemoutCount 值
ApplicationContext.getInstance().getAlert().check(apiStatInfo);
}
重构之后的代码更加灵活和易扩展。如果我们要想添加新的告警逻辑,只需要基于扩展的方式创建新的 handler 类即可,不需要改动原来的 check() 函数的逻辑。而且,我们只需要为新的 handler 类添加单元测试,老的单元测试都不会失败,也不用修改。
看了上面重构之后的代码,你可能还会有疑问:在添加新的告警逻辑的时候,尽管改动二(添加新的 handler 类)是基于扩展而非修改的方式来完成的,但改动一、三、四貌似不是基于扩展而是基于修改的方式来完成的,那改动一、三、四不就违背了开闭原则吗?
我们先来分析一下改动一:往 ApiStatInfo 类中添加新的属性 timeoutCount。
实际上,我们不仅往 ApiStatInfo 类中添加了属性,还添加了对应的 getter/setter 方法。那这个问题就转化为:给类中添加新的属性和方法,算作“修改”还是“扩展”?
我们再一块回忆一下开闭原则的定义:软件实体(模块、类、方法等)应该“对扩展开放、对修改关闭”。从定义中,我们可以看出,开闭原则可以应用在不同粒度的代码中,可以是模块,也可以类,还可以是方法(及其属性)。同样一个代码改动,在粗代码粒度下,被认定为“修改”,在细代码粒度下,又可以被认定为“扩展”。比如,改动一,添加属性和方法相当于修改类,在类这个层面,这个代码改动可以被认定为“修改”;但这个代码改动并没有修改已有的属性和方法,在方法(及其属性)这一层面,它又可以被认定为“扩展”。
实际上,我们也没必要纠结某个代码改动是“修改”还是“扩展”,更没必要太纠结它是否违反“开闭原则”。我们回到这条原则的设计初衷:只要它没有破坏原有的代码的正常运行,没有破坏原有的单元测试,我们就可以说,这是一个合格的代码改动。
我们再来分析一下改动三和改动四:在 ApplicationContext 类的 initializeBeans()方法中,往 alert 对象中注册新的 timeoutAlertHandler;在使用 Alert 类的时候,需要给 check() 函数的入参 apiStatInfo 对象设置 timeoutCount 的值。
这两处改动都是在方法内部进行的,不管从哪个层面(模块、类、方法)来讲,都不能算是“扩展”,而是地地道道的“修改”。不过,有些修改是在所难免的,是可以被接受的。为什么这么说呢?我来解释一下。
在重构之后的 Alert 代码中,我们的核心逻辑集中在 Alert 类及其各个 handler 中,当我们在添加新的告警逻辑的时候,Alert 类完全不需要修改,而只需要扩展一个新handler 类。如果我们把 Alert 类及各个 handler 类合起来看作一个“模块”,那模块本身在添加新的功能的时候,完全满足开闭原则。
而且,我们要认识到,添加一个新功能,不可能任何模块、类、方法的代码都不“修改”,这个是做不到的。类需要创建、组装、并且做一些初始化操作,才能构建成可运行的的程序,这部分代码的修改是在所难免的。我们要做的是尽量让修改操作更集中、更少、更上层,尽量让最核心、最复杂的那部分逻辑代码满足开闭原则。
在刚刚的例子中,我们通过引入一组 handler 的方式来实现支持开闭原则。如果你没有太多复杂代码的设计和开发经验,你可能会有这样的疑问:这样的代码设计思路我怎么想不到呢?你是怎么想到的呢?
先给你个结论,之所以我能想到,靠的就是理论知识和实战经验,这些需要你慢慢学习和积累。对于如何做到“对扩展开放、修改关闭”,我们也有一些指导思想和具体的方法论,我们一块来看一下。
实际上,开闭原则讲的就是代码的扩展性问题,是判断一段代码是否易扩展的“金标准”。如果某段代码在应对未来需求变化的时候,能够做到“对扩展开放、对修改关闭”,那就说明这段代码的扩展性比较好。所以,问如何才能做到“对扩展开放、对修改关闭”,也就粗略地等同于在问,如何才能写出扩展性好的代码。
在讲具体的方法论之前,我们先来看一些更加偏向顶层的指导思想。为了尽量写出扩展性好的代码,我们要时刻具备扩展意识、抽象意识、封装意识。这些“潜意识”可能比任何开发技巧都重要。
在写代码的时候后,我们要多花点时间往前多思考一下,这段代码未来可能有哪些需求变更、如何设计代码结构,事先留好扩展点,以便在未来需求变更的时候,不需要改动代码整体结构、做到最小代码改动的情况下,新的代码能够很灵活地插入到扩展点上,做到“对扩展开放、对修改关闭”。
还有,在识别出代码可变部分和不可变部分之后,我们要将可变部分封装起来,隔离变化,提供抽象化的不可变接口,给上层系统使用。当具体的实现发生变化的时候,我们只需要基于相同的抽象接口,扩展一个新的实现,替换掉老的实现即可,上游系统的代码几乎不需要修改。
刚刚我们讲了实现开闭原则的一些偏向顶层的指导思想,现在我们再来看下,支持开闭原则的一些更加具体的方法论。
我们前面讲到,代码的扩展性是代码质量评判的最重要的标准之一。实际上,我们整个专栏的大部分知识点都是围绕扩展性问题来讲解的。专栏中讲到的很多设计原则、设计思想、设计模式,都是以提高代码的扩展性为最终目的的。特别是 23 种经典设计模式,大部分都是为了解决代码的扩展性问题而总结出来的,都是以开闭原则为指导原则的。
在众多的设计原则、思想、模式中,最常用来提高代码扩展性的方法有:多态、依赖注入、基于接口而非实现编程,以及大部分的设计模式(比如,装饰、策略、模板、职责链、状态等)。设计模式这一部分内容比较多,后面课程中我们能会详细讲到,这里就不展开了。今天我重点讲一下,如何利用多态、依赖注入、基于接口而非实现编程,来实现“对扩展开放、对修改关闭”。
实际上,多态、依赖注入、基于接口而非实现编程,以及前面提到的抽象意识,说的都是同一种设计思路,只是从不同的角度、不同的层面来阐述而已。这也体现了“很多设计原则、思想、模式都是相通的”这一思想。
接下来,我就通过一个例子来解释一下,如何利用这几个设计思想或原则来实现“对扩展开放、对修改关闭”。注意,依赖注入后面会讲到,如果你对这块不了解,可以暂时先忽略这个概念,只关注多态、基于接口而非实现编程以及抽象意识。
比如,我们代码中通过 Kafka 来发送异步消息。对于这样一个功能的开发,我们要学会将其抽象成一组跟具体消息队列(Kafka)无关的异步消息接口。所有上层系统都依赖这组抽象的接口编程,并且通过依赖注入的方式来调用。当我们要替换新的消息队列的时候,比如将 Kafka 替换成 RocketMQ,可以很方便地拔掉老的消息队列实现,插入新的消息队列实现。具体代码如下所示:
// 这一部分体现了抽象意识
public interface MessageQueue { //... }
public class KafkaMessageQueue implements MessageQueue { //... }
public class RocketMQMessageQueue implements MessageQueue {//...}
public interface MessageFromatter { //... }
public class JsonMessageFromatter implements MessageFromatter {//...}
public class ProtoBufMessageFromatter implements MessageFromatter {//...}
public class Demo {
private MessageQueue msgQueue; // 基于接口而非实现编程
public Demo(MessageQueue msgQueue) { // 依赖注入
this.msgQueue = msgQueue;
}
// msgFormatter:多态、依赖注入
public void sendNotification(Notification notification, MessageFormatter m
//...
}
}
对于如何写出扩展性好的代码、如何实现“对扩展开放、对修改关闭”这个问题,我今天只是比较笼统地总结了一下,详细的知识我们在后面的章节中慢慢学习。
前面我们提到,写出支持“对扩展开放、对修改关闭”的代码的关键是预留扩展点。那问题是如何才能识别出所有可能的扩展点呢?
如果你开发的是一个业务导向的系统,比如金融系统、电商系统、物流系统等,要想识别出尽可能多的扩展点,就要对业务有足够的了解,能够知道当下以及未来可能要支持的业务需求。如果你开发的是跟业务无关的、通用的、偏底层的系统,比如,框架、组件、类库,你需要了解“它们会被如何使用?今后你打算添加哪些功能?使用者未来会有哪些更多的功能需求?”等问题。
不过,有一句话说得好,“唯一不变的只有变化本身”。即便我们对业务、对系统有足够的了解,那也不可能识别出所有的扩展点,即便你能识别出所有的扩展点,为这些地方都预留扩展点,这样做的成本也是不可接受的。我们没必要为一些遥远的、不一定发生的需求去提前买单,做过度设计。
最合理的做法是,对于一些比较确定的、短期内可能就会扩展,或者需求改动对代码结构影响比较大的情况,或者实现成本不高的扩展点,在编写代码的时候之后,我们就可以事先做些扩展性设计。但对于一些不确定未来是否要支持的需求,或者实现起来比较复杂的扩展点,我们可以等到有需求驱动的时候,再通过重构代码的方式来支持扩展的需求。
而且,开闭原则也并不是免费的。有些情况下,代码的扩展性会跟可读性相冲突。比如,我们之前举的 Alert 告警的例子。为了更好地支持扩展性,我们对代码进行了重构,重构之后的代码要比之前的代码复杂很多,理解起来也更加有难度。很多时候,我们都需要在扩展性和可读性之间做权衡。在某些场景下,代码的扩展性很重要,我们就可以适当地牺牲一些代码的可读性;在另一些场景下,代码的可读性更加重要,那我们就适当地牺牲一些代码的可扩展性。
在我们之前举的 Alert 告警的例子中,如果告警规则并不是很多、也不复杂,那 check()函数中的 if 语句就不会很多,代码逻辑也不复杂,代码行数也不多,那最初的第一种代码实现思路简单易读,就是比较合理的选择。相反,如果告警规则很多、很复杂,check() 函数的 if 语句、代码逻辑就会很多、很复杂,相应的代码行数也会很多,可读性、可维护性就会变差,那重构之后的第二种代码实现思路就是更加合理的选择了。总之,这里没有一个放之四海而皆准的参考标准,全凭实际的应用场景来决定。
今天的内容到此就讲完了。我们一块来总结回顾一下,你需要掌握的的重点内容。
1. 如何理解“对扩展开放、对修改关闭”?
添加一个新的功能,应该是通过在已有代码基础上扩展代码(新增模块、类、方法、属性等),而非修改已有代码(修改模块、类、方法、属性等)的方式来完成。关于定义,我们有两点要注意。第一点是,开闭原则并不是说完全杜绝修改,而是以最小的修改代码的代价来完成新功能的开发。第二点是,同样的代码改动,在粗代码粒度下,可能被认定为“修改”;在细代码粒度下,可能又被认定为“扩展”。
2. 如何做到“对扩展开放、修改关闭”?
我们要时刻具备扩展意识、抽象意识、封装意识。在写代码的时候,我们要多花点时间思考一下,这段代码未来可能有哪些需求变更,如何设计代码结构,事先留好扩展点,以便在未来需求变更的时候,在不改动代码整体结构、做到最小代码改动的情况下,将新的代码灵活地插入到扩展点上。
很多设计原则、设计思想、设计模式,都是以提高代码的扩展性为最终目的的。特别是23 种经典设计模式,大部分都是为了解决代码的扩展性问题而总结出来的,都是以开闭原则为指导原则的。最常用来提高代码扩展性的方法有:多态、依赖注入、基于接口而非实现编程,以及大部分的设计模式(比如,装饰、策略、模板、职责链、状态)。
学习设计原则,要多问个为什么。不能把设计原则当真理,而是要理解设计原则背后的思想。搞清楚这个,比单纯理解原则讲的是啥,更能让你灵活应用原则。所以,今天课堂讨论的话题是,为什么我们要“对扩展开放、对修改关闭”?