- spark-pyspark-standalone部署模式全过程
哈哈哈哈q
spark大数据分布式
声明:1.参考视频b站黑马程序员视频,极力推荐这个视频,侵权删除https://www.bilibili.com/video/BV1Jq4y1z7VP/?spm_id_from=333.337.search-card.all.click&vd_source=3ae466b20a9e8eabdaa10e84c99758492.第一次配置,仅作为个人记录使用。3.参考黑马程序员standalone配置
- 类库与框架、在window(pycharm)搭建pyspark库,连接Linux。
哈哈哈哈q
+sparkspark大数据分布式
类库:一堆别人写好的代码,可以直接导入使用,pandas框架:可以独立运行,软件产品,如sparkpandas用于:小规模数据集spark用于:大规模数据集pysparkpython的运行类库,内置了完全的sparkapi,可以通过pyspark类库类库来编写spark应用程序。并将其提交到spark集群中运行。搭建。。很麻烦,本地需要pycharm专业版,利用shh连接Linux中的ana库。测
- PySpark学习笔记5-SparkSQL
兔子宇航员0301
数据开发小白成长笔记学习笔记
sparkSql的数据抽象有两种。一类是dataset适用于java和Scala一类是dataframe适用于java,Scala,python将rdd转换为dataframe#方式一df=spark.createDataFrame(rdd,schema=['name','age'])#方式二schema=Structtype().add('id',integertype(),nullable=F
- pySpark学习笔记4——预处理csv数据3
小李飞刀李寻欢
NLP与推荐算法pySparkhdfsdataframecsv
嗨,各位大佬好,我是开局一手好牌,最后打得稀烂,输掉所有的菜鸟小明哥。本文仍旧是pySpark系列继续,欢迎关注,并请持续关注。入门,开始,继续。有大佬说,很多人写博文都是开篇啥的,往往只有一两篇,后来再无更新,而我不是,专注,持续深入才是我的本色。回到征途,在spark中,有很多函数可能你并不知道或者真的没有,那么就需要自己定义个函数了,这很正常,这就是udf,即望文生义——userdefine
- 《AI赋能行业实战:揭秘企业数字化转型最佳实践,落地案例深度解析!》 ---- 总目录
shiter
人工智能系统解决方案与技术架构人工智能大数据AI
文章大纲金融行业落地实践浅析基于PySpark进行信用卡评分--实战案例迁移学习小样本金融风控生物信息识别大健康行业落地实践浅析传统行业深度融合升级如何深度参与创业?物联网行业案例浅析智慧园区案例浅析计算机视觉应用案例计算机视觉入门学习国外的资源国内的资源YOLO学习modelzoo计算机视觉基础目标检测YOLOv5YOLOv8自动缺陷检测(AutoDefectClassification)、零件
- Spark 基本概念
Buutoorr
spark大数据分布式scala
#官网部分解释ClusterModeOverview-Spark3.3.0DocumentationApplication:指的是用户编写的Spark应用程序/代码,一个完整的main方法程序,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码,如main方法中有WordCount代码有哪些命令会产生一个Applicationspark/bin/pyspark【输入exi
- spark python入门_python pyspark入门篇
weixin_39686634
sparkpython入门
一.环境介绍:1.安装jdk7以上2.python2.7.113.IDEpycharm4.package:spark-1.6.0-bin-hadoop2.6.tar.gz二.Setup1.解压spark-1.6.0-bin-hadoop2.6.tar.gz到目录D:\spark-1.6.0-bin-hadoop2.62.配置环境变量Path,添加D:\spark-1.6.0-bin-hadoop2
- Python大数据之PySpark(三)使用Python语言开发Spark程序代码_windows spark python
2401_84181704
程序员大数据pythonspark
算子:rdd的api的操作,就是算子,flatMap扁平化算子,map转换算子Transformation算子Action算子步骤:1-首先创建SparkContext上下文环境2-从外部文件数据源读取数据3-执行flatmap执行扁平化操作4-执行map转化操作,得到(word,1)5-reduceByKey将相同Key的Value数据累加操作6-将结果输出到文件系统或打印代码:#-*-codi
- Spark入门(Python)
nfenghklibra
pythonspark
目录一、安装Spark二、Spark基本操作一、安装Sparkpip3installpyspark二、Spark基本操作#导入spark的SparkContext,SparkConf模块frompysparkimportSparkContext,SparkConf#导入os模块importos#设置PYSPARK的python环境os.environ['PYSPARK_PYTHON']="C:\\
- PyDeequ库在AWS EMR启动集群中数据质量检查功能的配置方法和实现代码
weixin_30777913
pythonspark大数据云计算aws
PyDeequ是一个基于ApacheSpark的PythonAPI,专门用于定义和执行“数据单元测试”,从而在大规模数据集中测量数据质量。PyDeequ框架在PySpark代码中提供了全面的数据质量检查功能,能够帮助用户&有效地监控和提升大规模数据集的数据质量。它在PySpark代码中的数据质量检查功能主要包括以下几个方面:核心组件指标计算(MetricsComputation):利用分析器(An
- spark 算子例子_Spark性能调优方法
不让爱你的人失望
spark算子例子
公众号后台回复关键词:pyspark,获取本项目github地址。Spark程序可以快如闪电⚡️,也可以慢如蜗牛?。它的性能取决于用户使用它的方式。一般来说,如果有可能,用户应当尽可能多地使用SparkSQL以取得更好的性能。主要原因是SparkSQL是一种声明式编程风格,背后的计算引擎会自动做大量的性能优化工作。基于RDD的Spark的性能调优属于坑非常深的领域,并且很容易踩到。我们将介绍Spa
- 在AWS上使用KMS客户端密钥加密S3文件,同时支持PySpark读写和Snowflake导入
weixin_30777913
pythonspark大数据云计算数据仓库
现有AWSEMR集群上运行PySpark代码,可以读写S3上的数据文件,Snowflake数据仓库也需要导入S3上的文件到表。现在要用AWSKMS有客户端密钥加密S3上的文件,同时允许PySpark代码,可以读写S3上的数据文件,Snowflake数据仓库导入S3上的文件到表。为了实现AWSEMR上的PySpark读写KMS加密的S3文件,并让Snowflake导入这些文件,请按照以下步骤操作:一
- 性能优化案例:通过合理设置spark.shuffle.memoryFraction参数的值来优化PySpark程序的性能
weixin_30777913
pythonspark大数据
在PySpark中,合理调整spark.shuffle.memoryFraction参数可以有效优化Shuffle阶段的性能,尤其是在存在大量磁盘溢出的场景下。通过合理设置spark.shuffle.memoryFraction并结合其他优化手段,可显著减少Shuffle阶段的磁盘I/O,提升PySpark作业的整体性能。以下是优化案例的总结及分步说明:优化背景问题现象:PySpark作业在Shu
- RDD 算子全面解析:从基础到进阶与面试要点
天冬忘忧
Sparkspark大数据
Spark的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客Spark的Standalone集群环境安装与测试-CSDN博客PySpark本地开发环境搭建与实践-CSDN博客Spark程序开发与提交:本地与集群模式全解析-CSDN博客SparkonYARN:Spark集群模式之Yarn模式的原理、搭建与实践-CSDN博客Spark中RDD的诞生:原理、操作与分区规则-CSDN博客Spar
- anaconda中pyspark_自学大数据——9 Anaconda安装与使用pyspark
步六孤陆
首先从Anaconda官网上下载Anaconda。一、解压安装包sudobashAnaconda3-2020.07-Linux-x86_64.shchown-Rhadoop:hadoop/opt/anaconda/vi/etc/profileexportANACONDA_HOME=/opt/anacondaexportPATH=$PATH:$ANACONDA_HOME/bin:source/etc
- PySpark数据处理过程简析
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介PySpark是ApacheSpark的PythonAPI,可以用Python进行分布式数据处理,它在内存中利用了ApacheHadoopYARN资源调度框架对数据进行并行处理。PySpark可以直接使用Hadoop文件系统、HDFS来存储数据,也可以通过S3、GCS、ADLS等云存储平台保存数据。因此,在不同的数据源之间移动数据时,只需要复制一次数据就可以完成
- 2022-02-09大数据学习日志——PySpark——Spark快速入门&Standalone集群
王络不稳定
sparkbigdata大数据
第一部分Spark快速入门01_Spark快速入门【Anaconda软件安装】[掌握]使用Python编写Spark代码,首先需要安装Python语言包,此时安装Anaconda科学数据分析包。Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。Anaconda是跨平台的,有Windows、MacOS、Linux版本。#下载地址:ht
- PySpark
rainyrainbow
大数据hadoop
1.PySpark的搭建https://blog.csdn.net/qq_36330643/article/details/78429109PySpark是Spark为Python开发者提供的API,位于$SPARK_HOME/bin目录,其依赖于Py4J。在Pycharm中配置使用spark1.在Pycharm中新建python项目,解释器使用的是python3.4File=>Settings切
- 性能优化案例:通过合理设置spark.default.parallelism参数的值来优化PySpark程序的性能
weixin_30777913
大数据sparkpython
在PySpark中,spark.default.parallelism是一个关键参数,直接影响作业的并行度和资源利用率。通过合理设置spark.default.parallelism并结合数据特征调整,可显著提升PySpark作业的并行效率和资源利用率。建议在开发和生产环境中进行多轮基准测试以确定最优值。以下是如何通过调整此参数优化性能的详细说明,结合案例和最佳实践:1.参数作用与问题场景参数意义
- 性能优化案例:通过合理设置spark.storage.memoryFraction参数的值来优化PySpark程序的性能
weixin_30777913
python大数据spark
优化PySpark程序的性能时,合理设置spark.storage.memoryFraction(或相关内存参数)是关键。合理设置spark.storage.memoryFraction需结合任务类型和内存使用监控。对于缓存密集型任务,适当提高存储内存比例;对于Shuffle密集型任务,优先保障执行内存。新版本Spark的动态内存机制简化了调优,但手动干预在极端场景下仍有效。最终需通过反复测试验证
- PySpark之金融数据分析(Spark RDD、SQL练习题)
唯余木叶下弦声
大数据大数据sparkpysparkpython数据分析sql
目录一、数据来源二、PySparkRDD编程1、查询特定日期的资金流入和流出情况2、活跃用户分析三、PySparkSQL编程1、按城市统计2014年3月1日的平均余额2、统计每个城市总流量前3高的用户四、总结一、数据来源本文使用的数据来源于天池大赛数据集,由蚂蚁金服提供,包含用户基本信息、申购赎回记录、收益率、银行间拆借利率等多个维度,本文通过PySpark实现对该数据集的简单分析。数据来源:天池
- 厦门租房信息分析展示(pycharm+python爬虫+pyspark+pyecharts)(踩坑记录)
吃西红柿的鸡蛋
大数据hadoopsparkpython
厦门租房信息分析展示(pycharm+python爬虫+pyspark+pyecharts)(踩坑记录)项目地址http://dblab.xmu.edu.cn/blog/2307/踩坑:Spark分析文件rent_analyse.py改变Spark读取csv文件的写法sparkContext=SparkContext("local","rent_analyse")sqlContext=SQLCon
- 大数据学习(四):Livy的安装配置及pyspark的会话执行
猪笨是念来过倒
大数据pyspark
一个基于Spark的开源REST服务,它能够通过REST的方式将代码片段或是序列化的二进制代码提交到Spark集群中去执行。它提供了以下这些基本功能:提交Scala、Python或是R代码片段到远端的Spark集群上执行;提交Java、Scala、Python所编写的Spark作业到远端的Spark集群上执行;提交批处理应用在集群中运行。从Livy所提供的基本功能可以看到Livy涵盖了原生Spar
- pyspark 中删除hdfs的文件夹
TDengine (老段)
大数据sparkhadoophdfsmapreduce
在pyspark中保存rdd的内存到文件的时候,会遇到文件夹已经存在而失败,所以如果文件夹已经存在,需要先删除。搜索了下资料,发现pyspark并没有提供直接管理hdfs文件系统的功能。寻找到一个删除的方法,是通过调用shell命令hadoopfs-rm-f来删除,这个方法感觉不怎么好,所以继续找。后来通过查找hadoophdfs的源代码发现hdfs是通过java的包org.appache.had
- PySpark
静听山水
Sparkspark
PySpark的本质确实是Python的一个接口层,它允许你使用Python语言来编写ApacheSpark应用程序。通过这个接口,你可以利用Spark强大的分布式计算能力,同时享受Python的易用性和灵活性。1、PySpark的工作原理PySpark的工作原理可以概括为以下几个步骤:编写Python代码:开发者使用Python语法来编写Spark应用程序。这些程序通常涉及创建RDDs(弹性分布
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd
2401_84187537
数据分析数据挖掘
DataFrame.show()使用格式:df.show()df.show(1)+---+---+-------+----------+-------------------+|a|b|c|d|e|+---+---+-------+----------+-------------------+|1|2.0|string1|2000-01-01|2000-01-0112:00:00|+---+---
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd(1)
2401_84181368
程序员数据分析数据挖掘
dfDataFrame[a:bigint,b:double,c:string,d:date,e:timestamp]####通过由元组列表组成的RDD创建rdd=spark.sparkContext.parallelize([(1,2.,‘string1’,date(2000,1,1),datetime(2000,1,1,12,0)),(2,3.,‘string2’,date(2000,2,1),
- PySpark数据分析基础:PySpark基础功能及DataFrame操作基础语法详解_pyspark rdd(2)
2401_84181403
程序员数据分析数据挖掘
轻松切换到pandasAPI和PySparkAPI上下文,无需任何开销。有一个既适用于pandas(测试,较小的数据集)又适用于Spark(分布式数据集)的代码库。熟练使用pandas的话很快上手3.StreamingApacheSpark中的Streaming功能运行在Spark之上,支持跨Streaming和历史数据的强大交互和分析应用程序,同时继承了Spark的易用性和容错特性。SparkS
- Pyspark DataFrame常用操作函数和示例
还是那个同伟伟
Spark人工智能机器学习pandaspysparkspark
针对类型:pyspark.sql.dataframe.DataFrame目录1.打印前几行1.1show()函数1.2take()函数2.读取文件2.1spark.read.csv3.获取某行某列的值(具体值)4.查看列名5.修改列名5.1修改单个列名5.2修改多个列名5.2.1链式调用withColumnRenamed方法5.2.2使用selectExpr方法6.pandas类型转化为pyspa
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><