- AI大语言模型概述:从GPT到BERT的技术演进
AI智能涌现深度研究
AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是大语言模型大语言模型是一种基于深度学习的自然语言处理技术,它可以理解和生成人类语言。这些模型通过学习大量的文本数据,捕捉到语言的语法、语义和情感等信息,从而实现对自然语言的理解和生成。1.2为什么大语言模型如此重要大语言模型在近年来取得了显著的进展,它们在各种自然语言处理任务中都取得了最先进的性能。这些任务包括机器翻译、情感分析、文本摘要、问答系统等。大语言模型的成功在很大
- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- Opencv Canny边缘检测
noruta
Opencvpythonopencv人工智能计算机视觉
边缘检测的目的是找到灰度值的突变步骤:使用高斯滤波,以平滑图像、滤除噪声计算图像中每个像素点的梯度强度和方向应用非极大值预测,以消除边缘检测的杂散响应应用双阈值检测来确定真实的和潜在的边缘通过抑制孤立的弱边缘最终完成边缘检测5.1高斯滤波器H=[0.09240.11920.09240.11920.15380.11920.09240.11920.0924]H=\begin{bmatrix}0.092
- 神经架构搜索 原理与代码实例讲解
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
神经架构搜索:原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习的快速发展,神经网络在各个领域取得了显著的成果。然而,设计一个高效、通用的神经网络架构仍然是一个具有挑战性的问题。手动设计网络架构需要大量的专业知识和经验,而且往往效率低下。因此,神经架构搜索(NeuralArchitectureS
- 智能教育:DeepSeek在个性化学习中的创新应用
Evaporator Core
#DeepSeek快速入门系统架构设计师DeepSeek进阶开发与应用聚类数据挖掘机器学习
教育是塑造未来的基石,而个性化学习则是现代教育的重要趋势。随着人工智能技术的飞速发展,教育领域正迎来一场深刻的变革。DeepSeek作为人工智能领域的领军者,正在通过其强大的技术能力,推动个性化学习的创新应用。一、个性化学习路径:从数据到洞察个性化学习的核心在于根据学生的学习数据,生成定制化的学习路径。DeepSeek通过深度学习算法,能够从海量的学习数据中提取关键信息,生成更加精准的学习建议。f
- 【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
然哥爱编程
深度学习cnnlstm
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述摘要:深度学习模型的超参数选择对模型的性能和泛化能力具有重要影响。本文提出了一种基于鲸鱼算法(WOA)优化长短期记忆神经网络(LSTM)模型的超参数选择方法。首先,我们介绍了LSTM模型的结构和训练过程。然后,我们
- AI视觉觉醒:深度学习如何革新视频标注,释放数据潜力基于深度学习的视频自动标注系统
海棠AI实验室
AI理论探索与学术前沿人工智能深度学习音视频
目录引言:被忽视的视频数据金矿传统视频标注的困境:效率、成本与瓶颈深度学习:视频自动标注的破局之道深度学习视频自动标注系统架构系统架构图核心技术解析目标检测(ObjectDetection)行为识别(ActionRecognition)视频分割(VideoSegmentation)代码实践:基于YOLOv5的目标检测视频标注示例挑战与未来展望结语:AI赋能,释放视频数据的无限可能引言:被忽视的视频
- 基于YOLOv5的无人超市商品检测:食品、饮料、零食与家居用品
深度学习&目标检测实战项目
YOLO目标跟踪深度学习人工智能ui
引言随着人工智能技术的快速发展,尤其是计算机视觉的提升,无人超市的概念逐渐成为现实。在无人超市中,商品的智能化管理和检测是其顺利运行的关键。商品检测不仅要实现高效、准确的物品识别,还要支持多种商品类别的实时检测,以保证购物体验的顺畅与安全。在此背景下,深度学习与目标检测算法,如YOLOv5,成为了实现这一目标的重要工具。YOLOv5作为目前最先进且高效的目标检测算法之一,其应用范围广泛,包括人脸检
- 基于YOLOv5的野生动物检测与监控系统:猫、狗、鸟、猴子、狮子、老虎、象的实时识别与分析
深度学习&目标检测实战项目
YOLO目标跟踪人工智能深度学习ui目标检测机器学习
1.引言随着人工智能技术的飞速发展,尤其是深度学习在计算机视觉领域的突破,目标检测技术已广泛应用于各类场景。从城市交通监控到安防系统,再到野生动物保护和生态监测,目标检测技术为我们提供了实时、精确的解决方案。在众多目标检测算法中,YOLO(YouOnlyLookOnce)系列因其高效性和实时性,已成为解决多类别目标检测任务的首选方法。本文将介绍如何使用YOLOv5进行野生动物检测与监控,包括猫、狗
- LLaMA Factory添加新模型template的实战解析
herosunly
大模型llamafactory新模型template实战解析
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 电商图书行业类目AI导购Agent系统详细设计与开发实战
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着电子商务的蓬勃发展,图书行业也迎来了线上销售的黄金时代。然而,海量的图书种类、复杂的读者需求,使得用户在选购图书时常常面临选择困难。传统的搜索和推荐方式往往无法精准匹配用户的个性化需求,导致用户体验不佳,转化率低。为了解决这一痛点,AI导购Agent系统应运而生。该系统利用人工智能技术,模拟专业的图书导购员,为用户提供个性化的图书推荐和导购服务。通过深度学习、自然语言处理等技术,A
- PyTorch数据加载:实战入门
秋.
pytorch人工智能python数据加载
"好的数据加载是成功训练的第一步"一、为什么要用DataLoader?当我们刚开始学习深度学习时,常常会这样处理数据:#传统方式加载数据images=[...]#所有图片数据labels=[...]#所有标签foriinrange(0,len(images),32):batch_images=images[i:i+32]batch_labels=labels[i:i+32]#训练代码...这种方式
- 深度学习-136-LangGraph之应用实例(五)构建RAG问答系统同时从不同的角度对比优化效果
皮皮冰燃
深度学习深度学习人工智能LangGraphRAG
文章目录1大语言模型2小粒度分割文档2.1处理文本构建Document2.2向量存储2.3创建图2.4测试调用3大粒度分割文档3.1构建Document3.2向量存储3.3创建图3.4测试调用4总结与优化4.1问题分析4.2对比不同的返回文档数4.3对比不同的嵌入模型4.3.1嵌入模型nomic-embed-text4.3.2嵌入模型bge-m34.4对比不同的大模型4.4.1大模型qwen2:7
- 56、深度学习-自学之路-自己搭建深度学习框架-17、关于为什么LSTM可以解决RNN的梯度爆炸和梯度消失的问题的解析。
小宇爱
深度学习-自学之路深度学习rnnlstm
我的话太苍白,你们可以去哔哩哔哩上搜索一个"大白话讲解LSTM长短期记忆网络如何缓解梯度消失,手把手公式推导反向传播”不仅仅解释了为什么,还把公式的推导也给了出来。讲的已经非常好了。还可以看一下他的专辑内容,其中有RNN,LSTM,GRU的详细解释。比我说的好。
- 从opencv-python入门opencv--GUI功能之绘图&鼠标与图像界面的交互
这是一个图像
python计算机外设opencvGUI计算机视觉图像处理交互
从opencv-python入门opencv--GUI功能之绘图和鼠标操作一、文章介绍二、opencv绘制直线、矩形、圆形1、cv.line()2、cv.circle()3、cv.rectangle()4、在图像上绘制直线、矩形和圆形5、cv.ellipse()(在空白画布上绘制椭圆)(1)img=cv.ellipse(img,center,axes,angle,startAngle,endAng
- 卷积神经网络(Convolutional Neural Network,CNN)详细解释(带示例)
浪九天
人工智能理论人工智能神经网络深度学习机器学习
目录卷积神经网络示例Python案例代码解释卷积神经网络概述:卷积神经网络是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型。它通过卷积层、池化层和全连接层等组件,自动提取数据的特征,大大减少了模型的参数数量,降低计算量,同时提高了模型的泛化能力。主要组件卷积层:是CNN的核心组件,由多个卷积核组成。卷积核在数据上滑动,通过卷积操作提取数据的局部特征。卷积操作是将卷积核与数据的局
- 如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型_大模型如何训练
大耳朵爱学习
人工智能语言模型产品经理大模型AI大模型
摘要:通过深入了解本文中的这些细节,并在实际项目中应用相关知识,将能够更好地理解和利用大模型的潜力,不仅在学术研究中,也在工程实践中。通过不断探索新方法、参与项目和保持热情,并将其应用于各种领域,从自然语言处理到计算机视觉和自动驾驶。通过不断学习、实践和探索,可以不断提升自己在深度学习领域的技能和洞察力,同时也能为社会和行业带来创新和改进。从小规模的项目和模型开始,逐渐迭代和扩展到更大的模型,逐步
- DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:
人工智能专属驿站
架构计算机视觉
以下是关于DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:1.事件检测与预警技术实现:视频监控与传感器数据融合:利用地铁站内的视频监控系统和传感器(如烟雾传感器、压力传感器)实时采集数据。通过深度学习算法(如目标检测和行为识别)对视频流进行分析,结合传感器数据,快速识别突发事件。自动警报触发:一旦检测到异常事件(如火灾、拥挤踩踏),系统立即通过预设的警报机制
- 使用深度学习模型U-Net进行训练基于哨兵2的作物分割数据集。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测
计算机C9硕士_算法工程师
分割数据深度学习pytorch人工智能
使用深度学习模型如U-Net进行训练基于哨兵2的作物分割。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测基于哨兵2的作物分割,共18种作物类型(背景,草地,软冬小麦,玉米,冬季大麦,冬季油菜,春季大麦,向日葵,葡萄藤,甜菜,冬季小黑麦,冬季硬质小麦,水果、蔬菜、花卉,土豆,豆科饲料,大豆,果园,混合谷物,高粱),38到61个不同时间段同一位置10通道多光谱图像,
- matlab连接散射点,使用小波散射做信号分类
死月絲卡蕾特
matlab连接散射点
在时间序列信号的深度学习第二部分,我们将介绍一下怎样使用小波散射做信号分类。本视频将分为两部分。第一部分中我们已经简单介绍一下深度学习,包括它的概念和工作流程等。并且我们演示了如何用时频变换,和基于卷积神经网络的迁移学习来做心电图信号的分类。第二部分中我们将首先介绍什么是小波散射,之后将聚焦在怎样使用小波散射技术也就是不变散射卷积网络做自动特征提取,和使用长短期记忆网络也就是LSTM(LongSh
- 周志华机器学习西瓜书 第五章 神经网络-学习笔记(超详细)
Sodas(填坑中....)
周志华西瓜书——详细笔记附例题图解机器学习神经网络学习人工智能数据挖掘算法
在机器学习中,神经网络一般指的是"神经网络学习",是机器学习与神经网络两个学科的交叉部分。所谓神经网络,目前用的最广泛的一个定义是"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体做出交互反应"。神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- Ubuntu20.04 ros-noetic下opencv多版本问题may conflict with libopencv_highgui.so.4.2
JANGHIGH
小技巧OpenCVopencv人工智能计算机视觉
Ubuntu20.04ros-noetic下opencv多版本问题问题解决情况1情况2方法当前终端生效将上述命令添加到~/.bashrc中,使其永久生效问题当编译某程序包时,出现如下警告,但是编译通过。/usr/bin/ld:warning:libopencv_highgui.so.406,neededby/lidar_slam_ws/devel/lib/libvikit_common.so,ma
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN解析
大模型_学习路线
深度学习cnntransformer人工智能AI大模型大模型LLM
今天探讨它们各自适用的场景,让您知道在何种情况下选择何种模型;同时分析它们的优势与局限,助您全面评估这些模型的性能。一、卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分
- 3.4.4- 先颜色后形状的方式 STM32串口通信 openmv+STM32串口通信 openmv串口通信openmv识别物体 openmv神经网络训练 openmv数字识
好家伙VCC
stm32神经网络嵌入式硬件单片机硬件工程51单片机嵌入式实时数据库
非常详细的视频和文字教程,讲解常见的openmv教程包括巡线、物体识别、圆环识别、阈值自动获取等。非常适合学习openmv、K210、K230等项目视频合集链接在:openmv教程合集openmv入门到项目开发openmv和STM32通信openmv和opencv区别openmv巡线openmv数字识别教程LCD3.4.4-先颜色后形状的方式可以再试试先颜色后形状的识别方式。importsenso
- 3.4.5-识别形状+颜色+增加最小变化阈值 STM32串口通信 openmv+STM32串口通信 openmv串口通信openmv识别物体 openmv神经网络训练 openmv数字识
好家伙VCC
stm32神经网络嵌入式硬件硬件工程单片机机器学习人工智能
非常详细的视频和文字教程,讲解常见的openmv教程包括巡线、物体识别、圆环识别、阈值自动获取等。非常适合学习openmv、K210、K230等项目视频合集链接在:openmv教程合集openmv入门到项目开发openmv和STM32通信openmv和opencv区别openmv巡线openmv数字识别教程LCD3.4.5-识别形状+颜色+增加最小变化阈值在形状+颜色的识别效果中,发现小球是不动,
- Slurm作业调度系统常见操作(使用超算运行深度学习)
坐在云朵上的kiwi
工程项目#deeplearning深度学习服务器
1.传输下载文件sftp远程命令cd,pwd等,本地命令lcd,lpwdget远程地址本地地址put本地地址远程地址上传文件夹1.在远程建立和本地一样名称的文件夹如data/2.put-rdata/2.建立虚拟环境moduleloadpython/3.8#加载modulevirtualenv--no-downloadENV#建立一个叫ENV的虚拟环境激活虚拟环境sourceENV/bin/acti
- pyQT学习笔记-----pushbutton控制Graphics view内对象移动
汉东省长达康
pyQTpyQTGraphicsviewpushbutton控制移动
pyQT学习笔记-----pushbutton控制Graphicsview内对象移动引言项目需要制作一个美观,大气,高逼格的控制界面,出于项目的需要,以及本人对于python语言的掌握程度远高于C,所以果断采用了python+pyQT这个框架,今天本人终于完成了这个控制系统二维操作的动态显示,历时三个周,前前后后试过很多的方法。第一种尝试:从lable显示图片开始,接着使用openCV,用labl
- 深度学习框架之主流学习框架
uu1224
深度学习学习人工智能机器学习神经网络
深度学习框架是一类专门设计用来简化和加速神经网络模型开发过程的软件工具。它们提供了构建、训练和部署神经网络所需的各种功能和库。以下是一些主流的深度学习框架及其特点:TensorFlow:由Google开发,是一个广泛使用的开源深度学习框架。它以强大的图计算模型和分布式计算能力著称,并且通过高级API如Keras,为用户提供了易于上手的开发体验。PyTorch:由Facebook开发,以其动态计算图
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite