spark批量写写数据到Hbase中(bulkload方式)

1:为什么大批量数据集写入Hbase中,需要使用bulkload

  • BulkLoad不会写WAL,也不会产生flush以及split。
  • 如果我们大量调用PUT接口插入数据,可能会导致大量的GC操作。除了影响性能之外,严重时甚至可能会对HBase节点的稳定性造成影响。但是采用BulkLoad就不会有这个顾虑。
  • 过程中没有大量的接口调用消耗性能
  • 可以利用spark 强大的计算能力

上面是一个总的执行流程图, 数据生成,HFile转换以及HFile加载, 下面是HFile 的格式, 就是个key value 存储结构,
key 是由行健column family 和限定符指定, 然后再加上key的索引

spark批量写写数据到Hbase中(bulkload方式)_第1张图片

spark批量写写数据到Hbase中(bulkload方式)_第2张图片

 

spark批量写写数据到Hbase中(bulkload方式)_第3张图片

spark批量写写数据到Hbase中(bulkload方式)_第4张图片

 

注意:

生成HFile要求Key有序。开始是以为只要行键有序,即map之后,sortByKey就ok,后来HFileOutputFormat一直报后值比前值小(即未排序)。翻了很多鬼佬网站,才发现,这里的行键有序,是要求rowKey+列族+列名整体有序!!!

package hbaseLoad.CommonLoad

import java.io.IOException
import java.sql.Date
import java.util
import java.util.concurrent.{Executors, ScheduledExecutorService, TimeUnit}

import org.apache.hadoop.fs.Path
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.{HFileOutputFormat2, LoadIncrementalHFiles}
import org.apache.hadoop.hbase.{HBaseConfiguration, HColumnDescriptor, HTableDescriptor, KeyValue, TableName}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapreduce.Job
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

/**
  * Created by angel;
  */
object Hfile {
  val zkCluster = "hadoop01,hadoop02,hadoop03"
  val hbasePort = "2181"
  val tableName = TableName.valueOf("hfile")
  val columnFamily = Bytes.toBytes("info")
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Hfile").setMaster("local[*]")
    conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
    conf.registerKryoClasses(Array(classOf[D_class]))
    val sc = new SparkContext(conf)
    val fileData: RDD[String] = sc.textFile("data")
    val rdd = fileData.map{
      line =>
        val dataArray = line.split("@")
        val rowkey = dataArray(0)+dataArray(1)
        val ik = new ImmutableBytesWritable(Bytes.toBytes(rowkey))
        val kv = new KeyValue(Bytes.toBytes(rowkey) , columnFamily ,  Bytes.toBytes("info") , Bytes.toBytes(dataArray(2)+":"+dataArray(3)+":"+dataArray(4)+":"+dataArray(5)))
        (ik , kv)
    }
//    val scheduledThreadPool = Executors.newScheduledThreadPool(4);
//    scheduledThreadPool.scheduleWithFixedDelay(new Runnable() {
//      override def run(): Unit = {
//        println("=====================================")
//      }
//
//    }, 1, 3, TimeUnit.SECONDS);
    hfile_load(rdd)
  }
  def hfile_load(rdd:RDD[Tuple2[ImmutableBytesWritable , KeyValue]]): Unit ={
    val hconf = HBaseConfiguration.create()
    hconf.set("hbase.zookeeper.quorum", zkCluster);
    hconf.set("hbase.master", "hadoop01:60000");
    hconf.set("hbase.zookeeper.property.clientPort", hbasePort);
    hconf.setInt("hbase.rpc.timeout", 20000);
    hconf.setInt("hbase.client.operation.timeout", 30000);
    hconf.setInt("hbase.client.scanner.timeout.period", 200000);
    //声明表的信息
    var table: Table = null
    var connection: Connection = null
    try{
      val startTime = System.currentTimeMillis()
      println(s"开始时间:-------->${startTime}")
      //生成的HFile的临时保存路径
      val stagingFolder = "hdfs://hadoop01:9000/hfile"
      //将日志保存到指定目录
      rdd.saveAsNewAPIHadoopFile(stagingFolder,
        classOf[ImmutableBytesWritable],
        classOf[KeyValue],
        classOf[HFileOutputFormat2],
        hconf)
      //开始即那个HFile导入到Hbase,此处都是hbase的api操作
      val load = new LoadIncrementalHFiles(hconf)

      //创建hbase的链接,利用默认的配置文件,实际上读取的hbase的master地址
      connection = ConnectionFactory.createConnection(hconf)
      //根据表名获取表
      table = connection.getTable(tableName)
      val admin = connection.getAdmin
      //构造表描述器
      val hTableDescriptor = new HTableDescriptor(tableName)
      //构造列族描述器
      val hColumnDescriptor = new HColumnDescriptor(columnFamily)
      hTableDescriptor.addFamily(hColumnDescriptor)
      //如果表不存在,则创建表
      if(!admin.tableExists(tableName)){
        admin.createTable(hTableDescriptor)
      }
      //获取hbase表的region分布
      val regionLocator = connection.getRegionLocator(tableName)
      //创建一个hadoop的mapreduce的job
      val job = Job.getInstance(hconf)
      //设置job名称
      job.setJobName("DumpFile")
      //此处最重要,需要设置文件输出的key,因为我们要生成HFile,所以outkey要用ImmutableBytesWritable
      job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
      //输出文件的内容KeyValue
      job.setMapOutputValueClass(classOf[KeyValue])
      //配置HFileOutputFormat2的信息
      HFileOutputFormat2.configureIncrementalLoad(job, table, regionLocator)
      //开始导入
      load.doBulkLoad(new Path(stagingFolder), table.asInstanceOf[HTable])
      val endTime = System.currentTimeMillis()
      println(s"结束时间:-------->${endTime}")
      println(s"花费的时间:----------------->${(endTime - startTime)}")
    }catch{
      case e:IOException =>
        e.printStackTrace()
    }finally {
      if (table != null) {
        try {
          // 关闭HTable对象 table.close();
        } catch {
          case e: IOException =>
            e.printStackTrace();
        }
      }
      if (connection != null) {
        try { //关闭hbase连接. connection.close();
        } catch {
          case e: IOException =>
            e.printStackTrace();
        }
      }
    }

  }

}

 

转载于:https://www.cnblogs.com/niutao/p/10547957.html

你可能感兴趣的:(spark批量写写数据到Hbase中(bulkload方式))