kdeplot(核密度估计图) & distplot

Seaborn是基于matplotlib的Python可视化库。 它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。 但应强调的是,应该把Seaborn视为matplotlib的补充,而不是替代物。

kdeplot(核密度估计图)

核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。通过核密度估计图可以比较直观的看出数据样本本身的分布特征。具体用法如下

*seaborn.kdeplot(data,data2=None,shade=False,vertical=False,kernel='gau',bw='scott',gridsize=100,cut=3,clip=None,legend=True,cumulative=False,shade_lowest=True,cbar=False, cbar_ax=None, cbar_kws=None, ax=None, *kwargs)

  

 

distplot

displot()集合了matplotlib的hist()与核函数估计kdeplot的功能,增加了rugplot分布观测条显示与利用scipy库fit拟合参数分布的新颖用途。具体用法如下:

 

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)

  

转载于:https://www.cnblogs.com/nxf-rabbit75/p/10422832.html

你可能感兴趣的:(kdeplot(核密度估计图) & distplot)