准备工作,需要配置本地scala环境,配置方法见我的另外一篇博客:
https://blog.csdn.net/fct2001140269/article/details/93978940
我的pom.xml也一并贴出,方便小伙伴们参考:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>swtxgroupId>
<artifactId>MySparkStreamTest1artifactId>
<version>1.0-SNAPSHOTversion>
<inceptionYear>2008inceptionYear>
<properties>
<maven.compiler.source>1.8maven.compiler.source>
<maven.compiler.target>1.8maven.compiler.target>
<encoding>UTF-8encoding>
<scala.version>2.11.12scala.version>
<spark.version>2.2.0spark.version>
<hadoop.version>2.7.2hadoop.version>
properties>
<repositories>
<repository>
<id>scala-tools.orgid>
<name>Scala-Tools Maven2 Repositoryname>
<url>http://scala-tools.org/repo-releasesurl>
repository>
repositories>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.orgid>
<name>Scala-Tools Maven2 Repositoryname>
<url>http://scala-tools.org/repo-releasesurl>
pluginRepository>
pluginRepositories>
<dependencies>
<dependency>
<groupId>org.scala-langgroupId>
<artifactId>scala-libraryartifactId>
<version>${scala.version}version>
dependency>
<dependency>
<groupId>junitgroupId>
<artifactId>junitartifactId>
<version>4.4version>
<scope>testscope>
dependency>
<dependency>
<groupId>org.specsgroupId>
<artifactId>specsartifactId>
<version>1.2.5version>
<scope>testscope>
dependency>
<dependency>
<groupId>org.scala-langgroupId>
<artifactId>scala-libraryartifactId>
<version>${scala.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-core_2.11artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-streaming_2.11artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-sql_2.11artifactId>
<version>${spark.version}version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-clientartifactId>
<version>${hadoop.version}version>
dependency>
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka_2.11artifactId>
<version>0.10.0.1version>
dependency>
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-streaming-kafka-0-10_2.11artifactId>
<version>2.3.0version>
dependency>
<dependency>
<groupId>commons-langgroupId>
<artifactId>commons-langartifactId>
<version>2.5version>
dependency>
dependencies>
<build>
<sourceDirectory>src/main/scalasourceDirectory>
<testSourceDirectory>src/test/scalatestSourceDirectory>
<plugins>
<plugin>
<artifactId>maven-assembly-pluginartifactId>
<version>3.0.0version>
<configuration>
<archive>
<manifest>
<mainClass>swtx.SparkDemomainClass>
manifest>
archive>
<descriptorRefs>
<descriptorRef>jar-with-dependenciesdescriptorRef>
descriptorRefs>
configuration>
<executions>
<execution>
<id>make-assemblyid>
<phase>packagephase>
<goals>
<goal>singlegoal>
goals>
execution>
executions>
plugin>
<plugin>
<groupId>org.scala-toolsgroupId>
<artifactId>maven-scala-pluginartifactId>
<executions>
<execution>
<goals>
<goal>compilegoal>
<goal>testCompilegoal>
goals>
execution>
executions>
<configuration>
<scalaVersion>${scala.version}scalaVersion>
<args>
<arg>-target:jvm-1.8arg>
args>
configuration>
plugin>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-eclipse-pluginartifactId>
<configuration>
<downloadSources>truedownloadSources>
<buildcommands>
<buildcommand>ch.epfl.lamp.sdt.core.scalabuilderbuildcommand>
buildcommands>
<additionalProjectnatures>
<projectnature>ch.epfl.lamp.sdt.core.scalanatureprojectnature>
additionalProjectnatures>
<classpathContainers>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINERclasspathContainer>
<classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINERclasspathContainer>
classpathContainers>
configuration>
plugin>
plugins>
build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-toolsgroupId>
<artifactId>maven-scala-pluginartifactId>
<configuration>
<scalaVersion>${scala.version}scalaVersion>
configuration>
plugin>
plugins>
reporting>
project>
二、spark streaming 接受kafka数据
具体的spark-streaming 的demo实现 ,从kafka接受数据
package swtx;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
/**
* Created by user on 2019/6/27.
*/
public class SparkDemo {
public static void main(String[] args) {
//设置SparkConf,配置连接资源信息.local[2]表示本地模式两个core
SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
//设置批次时间,测试可以用5秒,创建StreamingContext对象,运行时需要
JavaStreamingContext streamingContext = new JavaStreamingContext(conf, Durations.seconds(5));
//创建kafka连接配置参数,放入map中,使用spark-streaming的连接kafka的工具包KafkaUtils类衔接kafka和spark。
//最终返回InputDStream对象。类型:ConsumerRecord
Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "xxx.xx.xx.xxx:9092");//多个可用ip可用","隔开
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "fang_id");
Collection<String> topics = Arrays.asList("test_tank007");//配置topic,可以是数组
JavaInputDStream<ConsumerRecord<String, String>> javaInputDStream = KafkaUtils.createDirectStream(
streamingContext, LocationStrategies.PreferConsistent()
, ConsumerStrategies.Subscribe(topics, kafkaParams));
//将参数传入方法的的参数,采用匿名内部类的方法,new inferface名,重写其方法,返回DStream
//mapToPair:Return a new DStream by applying a function to all elements of this DStream.
JavaPairDStream<String, String> javaPairDStream = javaInputDStream.mapToPair(new PairFunction<ConsumerRecord<String, String>, String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, String> call(ConsumerRecord<String, String> consumerRecord) throws Exception {
return new Tuple2<>(consumerRecord.key(), consumerRecord.value());
}
});
/*对DStream操作,循环遍历DStream中的所有元素,对每一个元素应用对应的函数
* 对DStream的操作拆分为两部,第一步:对DStream代表的底层rdd操作,遍历,每个rdd对象(数据块)
* 第二步:对每一个rdd中的每个元组tuple执行遍历,拿到tuple中每个k-v键值对,直接打印输出;
*/
javaPairDStream.foreachRDD(new VoidFunction<JavaPairRDD<String, String>>() {
@Override
public void call(JavaPairRDD<String, String> javaPairRDD) throws Exception {
// TODO Auto-generated method stub
javaPairRDD.foreach(new VoidFunction<Tuple2<String, String>>() {
@Override
public void call(Tuple2<String, String> tuple2)
throws Exception {
// TODO Auto-generated method stub
System.out.println(tuple2._2);
}
});
}
});
//rdd本身也是惰性操作,需要streamingContext.start();来获取开始操作,开始streaming的消费运行
streamingContext.start();
try {
streamingContext.awaitTermination();//流式计算:无穷尽的死循环,Wait for the execution to stop.
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
结果数据为:
19/06/28 12:01:10 INFO MemoryStore: Block broadcast_16_piece0 stored as bytes in memory (estimated size 2.1 KB, free 1997.1 MB)
19/06/28 12:01:10 INFO BlockManagerInfo: Added broadcast_16_piece0 in memory on 172.19.50.22:54667 (size: 2.1 KB, free: 1997.1 MB)
19/06/28 12:01:10 INFO SparkContext: Created broadcast 16 from broadcast at DAGScheduler.scala:1006
19/06/28 12:01:10 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 16 (MapPartitionsRDD[33] at mapToPair at SparkDemo.java:54) (first 15 tasks are for partitions Vector(0))
19/06/28 12:01:10 INFO TaskSchedulerImpl: Adding task set 16.0 with 1 tasks
19/06/28 12:01:10 INFO TaskSetManager: Starting task 0.0 in stage 16.0 (TID 16, localhost, executor driver, partition 0, PROCESS_LOCAL, 4710 bytes)
19/06/28 12:01:10 INFO Executor: Running task 0.0 in stage 16.0 (TID 16)
19/06/28 12:01:10 INFO KafkaRDD: Computing topic test_tank007, partition 0 offsets 2312 -> 2361
19/06/28 12:01:10 INFO Executor: Finished task 0.0 in stage 16.0 (TID 16). 579 bytes result sent to driver
19/06/28 12:01:10 INFO TaskSetManager: Finished task 0.0 in stage 16.0 (TID 16) in 4 ms on localhost (executor driver) (1/1)
19/06/28 12:01:10 INFO TaskSchedulerImpl: Removed TaskSet 16.0, whose tasks have all completed, from pool
value:1468
value:1469
value:1470
value:1471
value:1472
value:1473
value:1474
value:1475
value:1476
value:1477
value:1478
value:1479