最近入坑pytorch框架,毕竟现在pytorch这么流行,怎么能不学习一波。一般来说训练和测试神经网络的流程基本上是大同小异的
训练过程一般要做的事情如下
train_datasets = MyDataset() # 第一步:构造Dataset对象
train_dataloader = DataLoader(train_datasets)# 第二步:通过DataLoader来构造迭代对象
model = MyNet()
#以交叉熵损失函数为例子
criterion = nn.CrossEntropyLoss()
#初始化优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
num_epoches = 100
for epoch in range(num_epoches):# 第三步:逐步迭代数据
model.train()
for i,(inputs,labels) in enumerate(train_dataloader):
optimizer.zero_grad()
#通过输入得到预测的输出
pred = model(inputs)
#计算损失函数
loss = criterion(pred, labels)
#反向传播
loss.backward()
optimizer.step()
#每隔10个batch_sie输出一次loss
#len(train_datasets) // batch_size的含义是表示有多少个batch_size
#上面循环中i的范围应该是从0到len(train_datasets) // batch_size-1
if (i+1) % 10 == 0:
print('Epoch:[%d/%d],Step:[%d/%d],Loss:%.4f' % (epoch + 1, num_epochs, i + 1, len(train_datasets) // batch_size, loss.item()))
#每次跑一次epoch都保存一下模型
torch.save(model, path)
例子:主要是参考了下面这篇博客
博客一:https://www.jianshu.com/p/1cd6333128a1
#-*- coding:utf-8 -*-
'''本文件用于举例说明pytorch保存和加载文件的方法'''
__author__ = 'puxitong from UESTC'
import torch as torch
import torchvision as tv
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import torch.backends.cudnn as cudnn
import datetime
import argparse
# 参数声明
batch_size = 32
epochs = 10
WORKERS = 0 # dataloder线程数
test_flag = True #测试标志,True时加载保存好的模型进行测试
ROOT = '/home/pxt/pytorch/cifar' # MNIST数据集保存路径
log_dir = '/home/pxt/pytorch/logs/cifar_model.pth' # 模型保存路径
# 加载MNIST数据集
transform = tv.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
train_data = tv.datasets.CIFAR10(root=ROOT, train=True, download=True, transform=transform)
test_data = tv.datasets.CIFAR10(root=ROOT, train=False, download=False, transform=transform)
train_load = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=WORKERS)
test_load = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=WORKERS)
# 构造模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 256, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(256 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = F.relu(self.conv3(x))
x = self.pool(F.relu(self.conv4(x)))
x = x.view(-1, x.size()[1] * x.size()[2] * x.size()[3])
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net().cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 模型训练
def train(model, train_loader, epoch):
model.train()
train_loss = 0
for i, data in enumerate(train_loader, 0):
x, y = data
x = x.cuda()
y = y.cuda()
optimizer.zero_grad()
y_hat = model(x)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
train_loss += loss
loss_mean = train_loss / (i+1)
print('Train Epoch: {}\t Loss: {:.6f}'.format(epoch, loss_mean.item()))
# 模型测试
def test(model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for i, data in enumerate(test_loader, 0):
x, y = data
x = x.cuda()
y = y.cuda()
optimizer.zero_grad()
y_hat = model(x)
test_loss += criterion(y_hat, y).item()
pred = y_hat.max(1, keepdim=True)[1]
correct += pred.eq(y.view_as(pred)).sum().item()
test_loss /= (i+1)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_data), 100. * correct / len(test_data)))
def main():
# 如果test_flag=True,则加载已保存的模型
if test_flag:
# 加载保存的模型直接进行测试机验证,不进行此模块以后的步骤
checkpoint = torch.load(log_dir)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
epochs = checkpoint['epoch']
test(model, test_load)
return
for epoch in range(0, epochs):
train(model, train_load, epoch)
test(model, test_load)
# 保存模型
state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch}
torch.save(state, log_dir)
if __name__ == '__main__':
main()
博客二:https://blog.csdn.net/weixin_41424926/article/details/105383064#12__12
if __name__ == '__main__':
epoch = 50
batchsize = 5
lr = 0.01
train_data = VOC2012()
train_dataloader = DataLoader(VOC2012(is_train=True),batch_size=batchsize,shuffle=True)
model = YOLOv1_resnet().cuda()
# model.children()里是按模块(Sequential)提取的子模块,而不是具体到每个层,具体可以参见pytorch帮助文档
# 冻结resnet34特征提取层,特征提取层不参与参数更新
for layer in model.children():
layer.requires_grad = False
break
criterion = Loss_yolov1()
optimizer = torch.optim.SGD(model.parameters(),lr=lr,momentum=0.9,weight_decay=0.0005)
is_vis = False # 是否进行可视化,如果没有visdom可以将其设置为false
if is_vis:
vis = visdom.Visdom()
viswin1 = vis.line(np.array([0.]),np.array([0.]),opts=dict(title="Loss/Step",xlabel="100*step",ylabel="Loss"))
for e in range(epoch):
model.train()
yl = torch.Tensor([0]).cuda()
for i,(inputs,labels) in enumerate(train_dataloader):
inputs = inputs.cuda()
labels = labels.float().cuda()
pred = model(inputs)
loss = criterion(pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Epoch %d/%d| Step %d/%d| Loss: %.2f"%(e,epoch,i,len(train_data)//batchsize,loss))
yl = yl + loss
if is_vis and (i+1)%100==0:
vis.line(np.array([yl.cpu().item()/(i+1)]),np.array([i+e*len(train_data)//batchsize]),win=viswin1,update='append')
if (e+1)%10==0:
torch.save(model,"./models_pkl/YOLOv1_epoch"+str(e+1)+".pkl")
# compute_val_map(model)
测试过程一般要做的事情如下
model = torch.load(path)
for i,(inputs,labels) in enumerate(test_dataloader):
pred = model(inputs)