- 模式识别 | PRML概览
ZIYUE WU
MachineLearning
PRML全书概览PRML全称PatternRecognitionandMachineLearning,个人认为这是机器学习领域中最好的书籍之一,全书的风格非常Bayesian,作者试图在贝叶斯框架下解释每一种机器学习模型。阅读起来有一定难度,不适合作为机器学习入门教材。然而这本书提供的贝叶斯视角有助于我们更为立体全面理解一些经典模型。全书分为十四个章节,这里我尽可能简要概述每个章节的主要内容,如果
- PRML笔记(十)
以负熵为食
PRML机器学习
10.ApproximateInference在probabilisticmodels中的一个核心任务是,在给定observed(visible)datavariablesX\mathbf{X}X的时候去计算关于latentvariablesZ\mathbf{Z}Z的posteriordistributionp(Z∣X)p(\mathbf{Z|X})p(Z∣X)。并且去在该概率分布下计算一些exp
- 2018年1月29日
真昼之月
积雪还是很多,但是路面不滑不影响交通,所以坐车还是很顺利的。地铁上开始掏出Kindle看《自私的基因》。上午花时间把类别型特征也加了进去,先读了1000行保证程序不会跑崩再上全量数据集,最后全网用户的ROC面积又有了一丝丝提升,所谓蚊子腿也是肉。但是深度学习模型还是不会调参啊……中午在食堂解决,下午则基本是摸鱼为主……PRML也看了一点,不过第三章中后期还是看不懂就跳到第四章了,感觉又犯了心浮气躁
- PRML第一章读书小结
飞剑客阿飞
PRML第一章读书小结 第一章用例子出发,较为简单的引入了概率论、模型、决策、损失、信息论的问题,作为机器学习从业者,读PRML除了巩固已有基础,还受到了很多新的启发,下面将我收到的启发总结如下。1.多项式曲线拟合问题多项式拟合问题作为全书的第一个引例,通过此说明了很多关键的概念。给定一个训练集,训练集由的N次观测组成,记作,对应了相应的观测值,记作。它们拥有了一个内在的规律,这个规律是我们
- Bishop新著 - 深度学习:基础与概念 - 前言
Garry1248
深度学习:基础与概念深度学习人工智能AIGC
译者的话十几年前,笔者在MSRA实习的时候,就接触到了ChristopherM,Bishop的经典巨著《PatternRecogitionandMachineLearning》(一般大家简称为PRML)。Bishop大神是微软剑桥研究院实验室主任,物理出身,对机器学习的基本概念和思想解释的深入浅出,鞭辟入里。以至于这本书被当时从事机器学习和AI方向的研究者奉为圣经。许多同学如饥似渴的阅读全书,连每
- [算法]PRML学习笔记 1.2.2 数学期望和协方差
AutismThyself
算法算法
数学期望在概率学中最重要的事情之一就是寻找出函数的加权平均值。其中函数f(x)的数学期望E[f]是根据其在概率分布p(x)下的平均值计算得出。对于离散分布变量,其公式为:E[f]=∑xp(x)f(x)\displaystyle\sum_{x}p(x)f(x)x∑p(x)f(x)因此,从这个公式可以得出对于离散变量来说数学期望(平均权重)来自于根据各个不同变量x相关的f(x)与这个f(x)相对概率p
- PRML 第三章
萌新待开发
⑉་机器学习及实践(书)་⑉PRML机器学习模式识别线性模型
3回归的线性模型1.之前说的是无监督学习:密度估计+聚类。这里讨论监督学习:回归。2.回归就是维变量对应目标变量的问题。第一章由多项式曲线拟合。最简单就是线性回归。但如果将输入变量进行非线性函数变化后进行线性组合,可以得到基函数。3.过程就是有个观测量和对应目标变量的训练数据集。目标有新的x预测新的t。就构建函数y(x)来预测输出。从概率角度看就是对每个x的目标t值的不确定性进行建模。最小化一个合
- PRML第二章
萌新待开发
⑉་机器学习及实践(书)་⑉机器学习PRML模式识别人工智能
目录2概率分布2.1二元变量2.1.1Beta分布2.2多项式变量2.2.1狄利克雷分布2.3高斯分布2.3.1条件高斯分布2.3.2边缘高斯分布2.3.3高斯变量的贝叶斯定理2.3.4高斯分布的最大似然估计2.3.5顺序估计2.3.6高斯分布的贝叶斯推断2.3.7学生t分布2.3.8周期变量2.3.9高斯混合模型2.4指数分布2.4.1最大似然与充分统计量2.4.2共轭先验2.4.3无信息先验2
- leetcode 圆圈中最后剩下的数字(约瑟夫环)
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。题目描述:0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是
- 正式找工作第二天
一路不向西
这两天生物钟差不多调过来了,已经能正常按时早起,按时午休,身体出现的不适感也没有很多。今天在看书的时候感觉PRML对我来说还是有些太难了,很多公式和推导其实都看不懂,所以感觉不太适合现在的阶段去看,暂时先不想调整,看这周的面试情况吧。做题的话今天感觉比昨天顺畅一点了,但是还是没法得到正确解,慢慢来吧。一、PRML今天看了第一章的第六节,信息熵。讲了一些信息量的概念、平均信息量、乘数等等。对于离散变
- PRML1-引言
仙守
PRML
本系列是根据《patternrecognitionandmachinelearning》一书写的,算是读书笔记?算是吧。因为是从自己角度出发,所以其实很大程度上自己看得懂,估计别人看不懂,还望见谅。数学符号约定:该书意在能够以最小的数学范围来解释整本书,不过在微积分、现代、概率论上还是不可避免的用到,为了方便概念的理解,所以本书在力求数学上的严谨的同时更多的是从不同的参考资料中将数学符号都能够统一
- 《现代推荐算法》矩阵分解系列简介
伊凡vnir
/关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。/文章来源《现代推荐算法》矩阵分解系列简介.该章主要介绍矩阵分解系列算法,该系列算法是推荐系统中最重要的算法之一,矩阵分解原理清晰,且复杂度不那么高。对于矩阵分解系列算法在推荐算法中而言,其容易编程实现,实现复杂度低,预测效果也好,
- 《现代推荐算法》神经协同过滤之MLP算法
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。《现代推荐算法》神经协同过滤之MLP算法神经协同过滤简介前面的文章介绍了协同过滤算法,主要分为基于用户的协同过滤算法与基于物品的协同过滤算法,同时指出,矩阵分解也属于广义的协同过滤算法。那么之前的文章介绍的SVD,SVD++等等矩阵分
- 图像分割|机器学习|模式识别(2019-04-29~05-04)
Rlinzz
本周计划1.发现pspnet那个多尺度融合对网络有效果,而且,当分割是两类的时候,就效果好,多类就学的很复杂。这周看完pspnet代码。2.完成学习机器学习作业,吴恩达机器学习课程作业。3.继续阅读PRML4.291.看pspnet代码●pythonwith关键字:简单就是打开文件,读完了,自动关文件。open函数withopen('file_name','r')asf:r=f.read()●to
- 机器学习面试之数据降维
梦无音
PCA(主成分分析)和LDA(线性判别分析,FisherLinearDiscriminantAnalysis)都是数据降维的一种方式。但是,PCA是无监督的,而LDA是有监督的。一、PCA在PRML书上有两种定义PCA的方式,其中一种将PCA定义为一种正交投影,使得原始数据在投影子空间的各个维度的方差最大化。对于观测数据x(D维空间),我们的目标是把数据投影到一个更低的M维中。原始数据集的均值向量
- 图像分割|机器学习|模式识别(2019-04-08~04-12)
Rlinzz
本周计划1.完成辅助loss代码2.二值分割效果有所提升,现在训练一下多值分割的效果。有两个思路,只修改class个数还有一个想法是以二值分割为另一个分支网络的gt,但这个需要处理一下分割处理的二值图。3.尽量读完PRML书的高斯部分。每次读英文版的都很慢。但还是要读呀。4.卸载3号服务器上的anaconda然后重新安装●辅助loss代码已完成。BUG1:在Unet末尾cat了前面几层后,在计算l
- 信息论之从熵、惊奇到交叉熵、KL散度和互信息
woisking2
前端
一、熵(PRML)考虑将A地观测的一个随机变量x,编码后传输到B地。这个随机变量有8种可能的状态,每个状态都是等可能的。为了把x的值传给接收者,需要传输⼀个3⽐特的消息。注意,这个变量的熵由下式给出:⾮均匀分布⽐均匀分布的熵要⼩。如果概率分布非均匀,同样使用等长编码,那么并不是最优的。相反,可以根据随机变量服从的概率分布构建Huffman树,得到最优的前缀编码。可以利⽤⾮均匀分布这个特点,使⽤更短
- leetcode 路径总和
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。题目描述:给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。说明:叶子节点是指没有子节点的节点。示例:给定如下二叉树,以及目标和sum=22,5/\48//\11134/\\72
- 《现代推荐算法》传统协同过滤(user-CF, item-CF)
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。《现代推荐算法》传统协同过滤(user-CF,item-CF)协同过滤简介协同过滤算法发展以来,与矩阵分解密切相关,多有时将矩阵分解系列也归于协同过滤种类,我们这里将其分开来对待,这篇文章讲传统的协同过滤算法,主要包含基于用户的协同过
- PRML第十四章读书笔记——Combining Models 贝叶斯模型平均、委员会bagging、提升方法/AdaBoost、决策树、条件混合模型/混合线性回归/混合逻辑回归/【层次】混合专家模型
Trade Off
机器学习#读书笔记PRML决策树机器学习人工智能集成学习剪枝
(终于读到最后一章了,吼吼!激动呀。我总感觉combiningmodels已经有点频率派方法的味道了。所以接下来要读ESL?)目录14.1BayesianModelAveraging14.2Committees14.3BoostingP659最小化指数误差P661boosting的误差函数14.4Tree-basedModels14.5ConditionalMixtureModelsP667线性回
- PRML一书中关于贝叶斯曲线拟合结论的推导细节
MezereonXP
机器学习算法机器学习人工智能
PRML一书中关于贝叶斯曲线拟合结论的推导细节我们令训练数据集为(X,T)(X,T)(X,T),对于一个新的点xxx,我们希望给出一个预测分布p(t∣x,X,T)p(t|x,X,T)p(t∣x,X,T)p(t∣x,X,T)=∫p(t∣x,w,X,T)dw=∫p(t∣x,w)p(w∣X,T)dwp(t|x,X,T)=\intp(t|x,w,X,T)dw=\intp(t|x,w)p(w|X,T)dw\
- 《现代推荐算法》神经协同过滤之GMF算法
伊凡vnir
关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。《现代推荐算法》神经协同过滤之GMF算法神经协同过滤简介前面的文章介绍了协同过滤算法,主要分为基于用户的协同过滤算法与基于物品的协同过滤算法,同时指出,矩阵分解也属于广义的协同过滤算法。那么之前的文章介绍的SVD,SVD++等等矩阵分
- 【应用】【正则化】L1、L2正则化
八号线土著
机器学习正则化
L1正则化的作用:特征选择从可用的特征子集中选择有意义的特征,化简机器学习问题。著名的LASSO(LeastAbsoluteShrinkageandSelectionOperator)模型将L1惩罚项和线性模型结合,使用最小二乘代价函数。L1正则化导致模型参数的稀疏性,被广泛地用于特征选择(featureselection)机制。L2正则化的作用:PRML书中描述“focusonquadratic
- 【西瓜书/机器学习·周志华】机器学习与模式识别思维导图 - PRML Mind Map
Harvey Chui
人工智能
【西瓜书/机器学习·周志华】机器学习与模式识别思维导图提供了与examcoo上作业题相同的知识点范围(由粗体加粗),第一到九章的思维导图第一章-绪论机器学习方法的分类,三大阶段,以及奥卡姆剃刀、NoFreeLunch原理第二章-模型评估与选择什么是误差?机器学习的评估方法,PPP、RRR、F1F_1F1等度量值,ROCROCROC与AUCAUCAUC曲线,代价曲线第三章-线性模型几种典型的线性模型
- EM算法详解
oskor
作为N大机器学习方法的一员,EM算法在各种书籍、博客、网上视频上被描述或者介绍,每次看完总感觉很多地方含糊不清,不能让一个初学者(有一定统计概率基础)接受。最近再B站上,看到徐亦达老师的课程,EM算法这块讲解易于理解和接受,再结合PRML一书的关于混合模型和EM章节内容,对整个EM算法从具体的原理上面有了更深入的理解。在下文中,更多的是通过公式推导和一些文字说明来梳理EM算法,尽量做到大家一看就明
- 正式找工作第三天
一路不向西
今天晚上要去面试蘑菇智行还挺开心的,感觉是家A轮公司,应该要求会低一些的吧,然后还针对性地看了些CNN和目标跟踪的问题,结果人家上来就问nccl库有什么特点,这一看要求我就达不到,果然聊了没几句我们就散了。有点受打击了,明天还有两家,好好加油吧。今天只有上午复习了PRML和LeetCode,下午在看之前面试的面经了。一、PRML今天复习了PRML的两节,第三节其实没看懂啥,讲的是顺序轨迹,其中有一
- 《现代推荐算法》矩阵分解系列(SVD,FunkSVD,BiasSVD)原理
伊凡vnir
/关注公众号长歌大腿,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。/文章来源《现代推荐算法》矩阵分解系列(SVD,FunkSVD,BiasSVD)原理.奇异值分解(SVD)奇异值分解(SVD)原理与主要应用在数据降维中,可以将这个用户物品对应的m×n矩阵M进行SVD分解,并通过选择部分较大的一些奇
- 模式识别与机器学习(一)——绪论、多项式拟合例子
Ice_spring
1.1绪论内容对应PRML书1.1节部分。多项式拟合例子在这个例子中,假设我们有两个变量,它们满足如下关系:其中是一个均值为、标准差为的高斯噪声。我们首先在区间内等间距地产生了10个点,接着根据如上的关系为这个点得到一组对应的目标函数值。这种数据产生方式符合大部分现实世界中的数据集的性质,即产生样本时既包含潜在的规律,又伴随着随机噪声。这些随机噪声的产生原因可能是某种内在的随机性,也可能是某种未被
- 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection
weixin_30390075
在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题。如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值,然后再根据测试集进行验证,选择效果最好的即可;大多数情况下,数据集大小是有限的或质量不高,那么需要有个第三测试集,用于测试选中的模型的评估。为了构建好的模型,我们常常选用其中质量较高的数据拿来训练,这
- 机器学习书单
jueshu
机器学习机器学习算法人工智能
理论PatternRecognitionandMachineLearning作者:ChristopherM.Bishop(英国剑桥大学微软剑桥研究院院长)https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/PRML《模式识别与机器学习》中英文PDF+程序代码+习题解答+笔记总结:《PatternRecognition
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen