- 数值计算模型范围的取值与思考--水泵水轮机压力脉动问题--学术论文模式--个人经验总结
lalalaO°C_m
经验分享-高效率!笔记算法数据分析经验分享信号处理
数值计算模型范围的取值与思考——水泵水轮机压力脉动问题目录数值计算模型范围的取值与思考——水泵水轮机压力脉动问题写在前面摘要1研究背景2研究现状3研究方法3.1模型结构参数的选取3.2数值计算方法和参数3.3计算工况参数3.4求解器参数4总结与思考参考文献写在前面压力脉动是引起水力机械振动进而影响水泵水轮机安全运行的重要原因,使用数值模拟模型能够实现高精度且高效的压力脉动特性的计算研究。本文是博主
- JavaEE概述和入门
曦暮
servletservletjavacgi
javaEE开发:为什么学JavaEE在我们学习Java语言时,你肯定是想知道Java到底能干些什么,现在到了JavaEE这个阶段,就可以告诉你了。JavaEE:Java平台企业版(JavaPlatformEnterpriseEdition),之前称为Java2Platform,EnterpriseEdition(J2EE),2018年3月更名为JakartaEE(这个名称应该还没有得到群众认可)
- 飞书多维表格+DeepSeek R1:打工人必备的AI神器,效率暴涨1000%![特殊字符]
sherlock__cc
人工智能飞书
导语当飞书多维表格遇上国产最强推理大模型DeepSeekR1,会擦出怎样的火花?本文手把手教你用「零代码」实现批量文案改写、论文精读、视频脚本生成。一、颠覆认知的三大核心优势1.批量处理的工业级效率单次处理1000+条数据,告别传统API逐条调用支持跨表格数据联动(如从CRM系统自动抓取客户需求)实时监控处理进度,失败任务自动重试2.零代码的极简交互无需Python环境配置直接输入自然语言指令(如
- JAVA毕设项目-基于SSM框架的百色学院创新实践学分认定系统源码+设计文档
AICurator
毕业设计java课程设计开发语言
文末获取源码+数据库+文档感兴趣的可以先收藏,有毕设问题,项目以及论文撰写等问题都可以和博主沟通,尽最大努力帮助更多的人!百色学院创新实践学分认定系统设计与实现摘要本百色学院创新实践学分认定系统是针对目前实践学分认定的实际需求,从实际工作出发,对过去的实践学分认定系统存在的问题进行分析,结合计算机系统的结构、概念、模型、原理、方法,在计算机各种优势的情况下,采用目前最流行的B/S结构和java中流
- 基于单片机的室外休闲智能座椅设计(论文+源码)
云山工作室
单片机嵌入式硬件毕业设计毕设
1系统总体设计本课题为基于单片机的室外休闲智能座椅的设计,其可以实现温湿度检测,座椅加热,自动照明,背靠调节等工作。整个系统架构如图2.1所示其中包括了按键模块,温湿度检测模块,显示模块,加热模块,照明模块,按摩模块,背靠调节模块等器件设备。其中,显示模块采用LCD1602液晶显示当前的状态信息;温湿度检测,采用DHT11传感器实现,加热和照明功能,采用继电器间接控制加热棒和LED灯来实现;按摩则
- 自识别标记(self-identifying marker) -(1) 简介
计算机视觉life
计算机视觉自识别标记计算机视觉
一、什么是自识别标记(Self-identifyingmarker)?自识别标记在不同的论文中有不同称谓,比如self-identifyingmarker,self-identifyingmarkerpattern,fiducialmarker等,在此我们统称为自识别标记。自识别标记乍一看有点类似我们常见的二维码,其每个标记具有唯一性。和二维码不同的是,自识别标记在实际应用中通常由多个一起组合成规
- VoVNet(2019 CVPR)
刘若里
论文阅读人工智能计算机视觉学习笔记网络
论文标题AnEnergyandGPU-ComputationEfficientBackboneNetworkforReal-TimeObjectDetection论文作者YoungwanLee,Joong-wonHwang,SangrokLee,YuseokBae,JongyoulPark发表日期2019年04月22日GB引用>LeeYoungwan,HwangJoong-won,LeeSangr
- 大白话聊聊“深度学习”和“大模型”
程序员鬼鬼
深度学习人工智能AI编程AIGCchatgptai
1950年图灵发表论文《计算机器与智能》(ComputingMachineryandIntelligence),提出了“机器智能”(MachineIntelligent)的概念,并且提出了著名的“图灵测试”的方法来判断机器是否有智能。1956年,达特茅斯会议,“人工智能”(ArtificialIntelligent)概念被首次提出,人工智能作为一个学科开始被研究。科学家梦想着未来可以用复杂物理结构
- 2024论文AIGC降重避雷指南:这些“坑”千万别踩!
LL06210721
AIGC人工智能
政策背景:“2024年知网/维普新增AIGC检测模块,高校严查AI生成内容。据公开数据,某985院校硕士论文初检AIGC率超标比例达35%。”常见误区分析:误区1:直接复制AI生成的口语化结论→被算法标记“非学术表达”;误区2:虚构参考文献→查重率飙升+学术诚信风险;误区3:忽略图表公式规范性→格式问题被导师驳回。合规建议:表达优化:使用专业工具替换AI生成的松散句式(例:将“总而言之”改为“综上
- 基于STM32的智能家居蓝牙系统(论文+源码)
云山工作室
stm32智能家居嵌入式硬件
1总体方案设计本次基于STM32的智能家居蓝牙系统,其系统总体架构如图2.1所示,采用STM32f103单片机作为控制器,通过DHT11传感器实现温湿度检测,MQ-2烟雾传感器实现烟雾检测,光敏电阻实现光照检测,同时将数据通过HC-05蓝牙模块上传到手机APP,用户可以通过手机APP实现对LED灯的开关控制,以及设定温度的报警阈值,如果温度太高会启动风扇进行降温,并将检测的参数通过OLED1286
- Python 爬虫实战:爬取学术论文数据
西攻城狮北
python爬虫实战案例
一、项目概述二、环境准备1.Python和PyCharm安装2.安装必要Python库三、爬虫实战1.分析目标网站2.编写爬虫代码(1)使用Requests和BeautifulSoup获取页面数据(2)使用Pandas存储数据(3)使用Scrapy框架构建高效爬虫3.爬取API数据四、数据处理与分析1.数据清洗2.数据可视化五、注意事项1.遵守法律和道德规范2.处理验证码3.应对反爬虫机制六、总结
- 图表解析技术:逆向提取图表数据,需要哪几步?
对于我们时代的所有“PPT工作者”来说,图表是一位熟悉的“老朋友”了。通过Office、编程语言库或是更丰富的生成工具,我们能够便捷地将数据绘制成美观、抓眼、适宜展示的图表,在各类汇报、讲演、宣传工作里起到比表格数字更直观的效果。然而,当我们产生了与之相反的需求:将各色报告或论文中的图表逆向转化为原始数据,用于数据处理分析,又应该怎么做呢?与绘制图表相比,解析它们的任务提出了更精密的技术要求。本期
- 【目标检测论文解读复现NO.38】基于改进YOLOv8模型的轻量化板栗果实识别方法
人工智能算法研究院
中文核心论文解读复现目标检测YOLO目标跟踪
前言此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。本文仅对论文代码实现,如果原文章的作者觉得不方便,请联系删除,尊重每一位论文作者。一、摘要为实现自然环境下的板栗果实目
- YOLOv8改进主干RTMDet论文系列:高效涨点的单阶段目标检测器主干
IdfdFsharp
YOLO计算机视觉
近年来,目标检测技术在计算机视觉领域取得了显著的进展。为了提高目标检测器的性能和降低延时,研究人员不断提出新的方法和架构。本文介绍了一篇名为"YOLOv8改进主干RTMDet"的论文系列,该系列通过结合最新的RTMDet论文和采用CSPNeXt主干结构,实现了高性能、低延时的单阶段目标检测器主干。在本论文系列中,作者着重研究了目标检测器主干的改进方法。主干网络在目标检测中扮演着重要的角色,它负责提
- 学术论文数据爬虫:爬取学术论文信息,进行文献分析
Python爬虫项目
2025年爬虫实战项目爬虫开发语言phppython媒体
1.引言学术论文分析是一项对科研人员、学术研究机构以及相关领域的从业人员至关重要的任务。随着学术文献的日益增多,手动查阅和筛选文献已经变得不切实际,如何快速、准确地获取学术论文并进行分析,已经成为一个亟待解决的问题。借助爬虫技术,我们可以高效地收集学术文献数据,进行文献计量分析,揭示研究趋势,帮助学者们深入了解各学科领域的最新发展。本篇博客将展示如何使用Python编写学术论文数据爬虫,爬取来自多
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- 2万字长文,九篇论文读懂大语言模型的前世今生
人工智能
2万字长文,九篇论文读懂大语言模型的前世今生友情提示:这是一篇2W字长文,但我保证,它绝对值得一读!如果感兴趣的话,感谢关注,点赞转发在看收藏,五键四连,谢谢~更多LLM架构文章:LLM架构专栏近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一4
- 双盲机制(信念,欲望):模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力人工智能androidpython自然语言处理pycharm
如何让人工智能生成的说服性对话更接近真实的日常交流目录如何让人工智能生成的说服性对话更接近真实的日常交流**一、核心创新点解析****1.双盲对话生成机制****2.因果心理理论指导****3.多智能体协作框架ToMMA****二、实验结论****三、论文贡献**怎么代码中实现Agent的双盲场景假设代码实现代码解释注意事项模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
- 深度学习现状与未来发展趋势分析报告(深度学习还是主流吗?)
与光同尘 大道至简
深度学习人工智能
此博客分析深度学习当前的主流应用领域、其受关注度的变化趋势、可能的技术替代或补充方案、产业界和学术界的不同发展方向,以及影响其受关注度变化的核心因素。报告将包括结构化分析(背景、现状、挑战、未来趋势)、数据驱动(市场趋势、论文发表量等数据支持)以及行业案例分析,以展示某些行业如何逐步减少对深度学习的依赖。背景深度学习的概念与发展历程:深度学习(DeepLearning)是机器学习中的一类方法,源于
- Search-o1:智体搜索增强的大型推理模型
三谷秋水
机器学习大模型人工智能人工智能深度学习机器学习
25年1月来自人大和清华的论文“Search-o1:AgenticSearch-EnhancedLargeReasoningModels”。大型推理模型(LRM)(例如OpenAI-o1)已通过大规模强化学习展示长步推理能力。然而,它们的扩展推理过程通常会受到知识不足的影响,从而导致频繁出现不确定性和潜在错误。为了解决这一限制,引入Search-o1,这是一个使用智体检索增强生成(RAG)机制和用
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- MobileNet 进化史: 从 V1 到 V3(V2篇)
kuweicai
深度总结深度学习MobileNetv1v2v3总结
MobileNet进化史:从V1到V3(V2篇)这部分内容总共由如下3篇文章构成。MobileNet进化史:从V1到V3(V1篇)MobileNet进化史:从V1到V3(V2篇)MobileNet进化史:从V1到V3(V3篇)MobileNet实战:基于MobileNet的人脸表情分类1.前言AndrewG.Howard等于2018年在MobileNetV1的基础上又提出了改进版本MobileNe
- 基于Springboot的毕业论文管理系统的设计与实现
2301_81127431
javajava
基于SpringBoot的毕业论文管理系统的设计与实现摘要:随着科技和互联网的飞速发展,无纸化办公方式已成为时代潮流,不仅绿色环保,而且能提高办公效率。目前,在很多高校,无纸化办公方式也特别普遍,但是,对于毕业论文的管理,却有很多高校仍处于人工管理的阶段,过程繁琐且效率低下,不利于教师对学生毕业论文管理做到整理方便、查找迅速。这种人工管理论文的方式已不能满足现代高校建设数字化校园的发展需要。针对目
- 【AI论文】DeepSolution:通过基于树的探索和双点思维促进复杂的工程解决方案设计
东临碣石82
人工智能
摘要:为复杂的工程挑战设计解决方案在人类生产活动中至关重要。然而,检索增强生成(RAG)领域之前的研究并没有充分解决与复杂工程解决方案设计相关的任务。为了填补这一空白,我们引入了一个新的基准,SolutionBench,来评估一个系统为具有多个复杂约束的工程问题生成完整和可行解决方案的能力。为了进一步推进复杂工程解决方案的设计,我们提出了一种新的系统SolutionRAG,该系统利用基于树的探索和
- 《YOLOv12魔术师专栏》专栏介绍 & 专栏目录
AI小怪兽
YOLOv811v12成长师YOLO深度学习人工智能目标检测计算机视觉
《YOLOv12魔术师专栏》将从以下各个方向进行创新(更新日期25.03.05):【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】订阅者可以申请发票,便于报销定期向订阅者提供源码工程+windows编译好的环境,配合博客使用《YOLOv12魔术师专栏
- Transformer架构简略:DeepSeek 的底层基石
windwant
人工智能人工智能transformer架构
2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer架构,彻底改变了自然语言处理(NLP)领域的格局。它不仅在各种NLP任务上取得了突破性进展,更成为了当今人工智能领域最具影响力的架构之一。一、从RNN到Transformer:突破瓶颈,开创先河在Transformer出现之前,循环神经网络(RNN)及其变体(如LSTM、GRU)是处理序列
- 设计稿转代码技术原理深度解析
寒鸦xxx
科技研究所css前端
一、设计稿转代码技术概述1.历史来源设计稿转代码(DesigntoCode,D2C)技术起源于低代码运动和设计系统的普及。早期前端开发依赖手工编码还原设计稿,效率低下且易出错。2010年代,随着Figma、Sketch等矢量设计工具的标准化,其基于JSON的结构化数据存储(如Figma的节点树)为自动化转码奠定了基础。2018年后,阿里Imgcook、微软Sketch2Code等工具首次将AI算法
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- 曝罗永浩挖走小米前50号员工要做AIOS;谷歌呼吁美国政府不要拆分公司;Copilot+PC能本地运行DeepSeek|极客头条
极客日报
资讯
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!AAAI2025杰出论文奖出炉,南大周志华团队获奖字节跳动以约3150亿美元估值启动新一轮股票回购计划消息称vivoOS部门新成立AI领域,大模型训练重心向端侧转移为“AIOS”招兵买马:消息称罗永浩挖来小
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,