仿射变换保证物体形状的“平直性”和“平行性”。透视变换不能保证物体形状的“平行性”。仿射变换是透视变换的特殊形式。
仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射(来自拉丁语,affine,“和…相关”)由一个非奇异的线性变换(运用一次函数进行的变换)接上一个平移变换组成。
/* Calculates coefficients of perspective transformation
* which maps (xi,yi) to (ui,vi), (i=1,2,3,4):
*
* c00*xi + c01*yi + c02
* ui = ---------------------
* c20*xi + c21*yi + c22
*
* c10*xi + c11*yi + c12
* vi = ---------------------
* c20*xi + c21*yi + c22
*
* Coefficients are calculated by solving linear system:
* / x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\
* | x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1|
* | x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2|
* | x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|,
* | 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0|
* | 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1|
* | 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2|
* \ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/
*
* where:
* cij - matrix coefficients, c22 = 1
*/
cv::Mat cv::getPerspectiveTransform( const Point2f src[], const Point2f dst[] )
{
Mat M(3, 3, CV_64F), X(8, 1, CV_64F, M.data);
double a[8][8], b[8];
Mat A(8, 8, CV_64F, a), B(8, 1, CV_64F, b);
for( int i = 0; i < 4; ++i )
{
a[i][0] = a[i+4][3] = src[i].x;
a[i][1] = a[i+4][4] = src[i].y;
a[i][2] = a[i+4][5] = 1;
a[i][3] = a[i][4] = a[i][5] =
a[i+4][0] = a[i+4][1] = a[i+4][2] = 0;
a[i][6] = -src[i].x*dst[i].x;
a[i][7] = -src[i].y*dst[i].x;
a[i+4][6] = -src[i].x*dst[i].y;
a[i+4][7] = -src[i].y*dst[i].y;
b[i] = dst[i].x;
b[i+4] = dst[i].y;
}
solve( A, B, X, DECOMP_SVD );
((double*)M.data)[8] = 1.;
return M;
}
/* Calculates coefficients of affine transformation
* which maps (xi,yi) to (ui,vi), (i=1,2,3):
*
* ui = c00*xi + c01*yi + c02
*
* vi = c10*xi + c11*yi + c12
*
* Coefficients are calculated by solving linear system:
* / x0 y0 1 0 0 0 \ /c00\ /u0\
* | x1 y1 1 0 0 0 | |c01| |u1|
* | x2 y2 1 0 0 0 | |c02| |u2|
* | 0 0 0 x0 y0 1 | |c10| |v0|
* | 0 0 0 x1 y1 1 | |c11| |v1|
* \ 0 0 0 x2 y2 1 / |c12| |v2|
*
* where:
* cij - matrix coefficients
*/
cv::Mat cv::getAffineTransform( const Point2f src[], const Point2f dst[] )
{
Mat M(2, 3, CV_64F), X(6, 1, CV_64F, M.data);
double a[6*6], b[6];
Mat A(6, 6, CV_64F, a), B(6, 1, CV_64F, b);
for( int i = 0; i < 3; i++ )
{
int j = i*12;
int k = i*12+6;
a[j] = a[k+3] = src[i].x;
a[j+1] = a[k+4] = src[i].y;
a[j+2] = a[k+5] = 1;
a[j+3] = a[j+4] = a[j+5] = 0;
a[k] = a[k+1] = a[k+2] = 0;
b[i*2] = dst[i].x;
b[i*2+1] = dst[i].y;
}
solve( A, B, X );
return M;
}
如果我们要自己实现这个函数,其实关键就是在于如何求解AX=B的问题。当然,我们可以直接调用库函数,如eigen
.
方案1: 采用引入opencv作为第三方库,然后相同的输入结果与opencv中进行对比。这种方法简单,但是需要引入庞大的第三方库opencv
方案2: 采用两次变换,例如测试warp_perspective
其中第一次将src_img
经过warp_perspective
变换为dst_img
,其中转换矩阵为M; 然后将dst_img
经过warp_perspective
变换为dst_warp
,其中转换矩阵为M‘
为M
的逆矩阵; 最后比较dst_warp
和src
中进行逐个像素对照,统计diff的像素个数count, return count <= thresh_value. 这种方法的缺点就是需要设置thresh_value,同时需要求M的逆矩阵
方案3: 如果不能将opencv作为第三方库引入,那么我们可以这样,将opencv的输入参数和结果作为hard code的方式,进行测试。这种方法尤其是 再嵌入式开发中很常见。
[1] https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html
[2] gTest的原理: http://cwlseu.github.io/st-CMAKE-and-gTest/搜索