- 查看 CUDA cudnn 版本 查看Navicat GPU版本
FergusJ
备份python开发语言
查看显卡型号:lspci|grepVGA(lspci是linux查看硬件信息的命令),屏幕会打印出主机的集显几独显信息python中查看显卡型号fromtensorflow.python.clientimportdevice_libdevice_lib.list_local_devices()
- 错误moduleNotFoundError: No module named 'matplotlib'
逆着tensor
tensorflow2.0学习tensorflow
错误ModuleNotFoundError:Nomodulenamed‘matplotlib’问题tensorflow2.0中jupyternotebook编写线性回归例子,出现ModuleNotFoundError:Nomodulenamed'matplotlib’错误解决办法好了,重新加载程序,已经可以用了。
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- TikTokenizer 项目常见问题解决方案
齐飞锴Timothea
TikTokenizer项目常见问题解决方案tiktokenizerOnlineplaygroundforOpenAPItokenizers项目地址:https://gitcode.com/gh_mirrors/ti/tiktokenizer项目基础介绍TikTokenizer是一个开源项目,主要用于文本处理,特别是将文本转化为可用于深度学习的格式。该项目是基于TensorFlow和Keras开发
- 软件定义世界下的教育创新:高校计算机实验室应重心转向开源平台
开源
一、一键式教学环境部署,节省90%准备时间•应用模板库:提供200+预置教学工具模板(如JupyterLab+TensorFlow、MySQL集群),教师可根据课程需求选择模板,5分钟内完成包含依赖库、运行环境的全栈部署。•多版本隔离:支持同一服务器并行运行不同版本框架(如Django3.2教学版与4.1开发版),避免版本冲突导致30%的课堂时间浪费。•自助式环境创建:学生通过命令行快速申请带GP
- 使用 TensorFlow 进行图像处理:深度解析卷积神经网络(CNN)
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow图像处理cnn人工智能机器学习pythonai
目录使用TensorFlow进行图像处理:深度解析卷积神经网络(CNN)1.什么是卷积神经网络(CNN)?CNN的基本结构为什么CNN适合图像处理?2.使用TensorFlow构建CNN2.1环境准备2.2加载并预处理MNIST数据集2.3构建CNN模型2.4编译和训练模型2.5评估模型3.CNN的优化与改进3.1使用数据增强3.2调整网络结构4.CNN在其他图像处理任务中的应用5.总结参考文献在
- LeetCode98-验证二叉搜索树
学习的学习者
LeetCodePython二叉搜索树
上个星期和导师去了华农一趟名义上是和导师去参加一个国家级的项目其实没我啥事都是我导师在那口若悬河当时和那边的本科生去了另一间会议室交流了关于GAN的知识偶然听说大家都在用pytorch好像最新版的也挺好用的反正就是学术界目前主要用这个框架工业界主要用Tensorflow(没办法,Google出品)这两天也拿来瞧了瞧好像也确实可以的!!!98-验证二叉搜索树给定一个二叉树,判断其是否是一个有效的二叉
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- MNIST数据集&手写数字识别
Zoro|
kerastensorflow人工智能机器学习
TensorFlow是一个开源的机器学习框架,由Google开发并发布。它提供了一种基于数据流图的编程模型,用于构建和训练机器学习模型。TensorFlow的核心概念是张量(Tensor)和流图(Graph)。张量是TensorFlow中的基本数据单位,可以理解为多维数组,可以是标量、向量、矩阵或更高维度的数组。流图是由一系列操作(Operation)和张量组成的。操作定义了计算和转换张量的方式。
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 大数据开发之Kubernetes篇----安装部署Kubernetes&dashboard
豆豆总
kubernetes
Kubernetes简介由于公司有需要,需要将外后的服务外加Tensorflow模型部署加训练全部集成到k8s上,所以特意记录下这次简单部署的过程。k8s安装部署首先,我们在部署任何大型的组件前都必须要做的事情就是关闭防火墙和设置hostname了vi/etc/hostsk8s001xxx.xxx.xxx.xxk8s002xxx.xxx.xxx.xx...systemctlstopfirewall
- 如何使用Python实现生成对抗网络(GAN)
「已注销」
互联网前沿技术韩进的创作空间全栈开发知识库python生成对抗网络tensorflow深度学习数据分析
生成对抗网络(GAN)是一种深度学习模型,由两个部分组成:生成器和判别器。生成器负责生成与训练数据相似的新数据,而判别器负责判断输入数据是真实的还是由生成器生成的。这两个部分不断相互博弈,直到生成器能够生成非常逼真的数据,使判别器难以区分生成数据和真实数据。下面是一个简单的Python实现,使用TensorFlow和Keras库。在开始之前,请确保已经安装了TensorFlow和Keras。imp
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- tensorflow 不支持python3以下的版本
辽宁大学
神经网络神经网络
小白一枚,没用过tensorflow,所以在安装的时候导致版本错误安装不上。遇到这种情况建议换python的版本。
- 3.13.0 python 配置tensorflow(CPU版本)
m0_Gattuso
tensorflow人工智能python
condacreate--nametestpython=3.12activatetestpipinstalltensorflow上面3步骤在condaprompt里完成退出时记得condadeactivate来源:Windows下tensorflow/pytorch环境配置_pycharm怎么配置tensorflow环境-CSDN博客然后问题出现了:condaenvironment里什么都没有,理
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- pytorch训练权重转化为tensorflow模型的教训
小枫小疯
深度学习部署模型转移pytorchtensorflow人工智能
模型构建时候有时候在工程量比较大的时候,不可避免使用迭代算法,迭代算法本身会让错误的追踪更加困难,因此掌握基本的框架之间的差异非常重要。以下均是在模型转换过程中出现的错误。shuffleoperation(shuffle操作)这个操作原本是用来将各个通道之间的信息进行打乱后,此时面临重要的问题就是,如果将通道打乱,在pytorch里面与tensorflow中间,两种通道排序是不一样的,是采用不同的
- OpenCV 深度学习模块 cv2.dnn 与其他深度学习框架的优缺点对比及适用场景
白.夜
深度学习opencv
OpenCV提供了一个深度学习模块cv2.dnn,让开发者能够在计算机视觉项目中轻松加载和推理深度学习模型。相比于TensorFlow、PyTorch等其他深度学习框架,cv2.dnn有其独特的优点与缺点,适用于不同的应用场景。在这篇文章中,我们将详细分析cv2.dnn的优缺点,并讨论它的适用场景。一、cv2.dnn的优点1.简单易用cv2.dnn提供了一个相对简单且易于使用的接口,适合已经在使用
- 【Transformer-Hugging Face手册 07/10】 微调预训练模型
无水先生
人工智能高级阶段人工智能综合transformer深度学习人工智能
微调预训练模型-目录一、说明二、在本机PyTorch中微调预训练模型。2.1加载数据2.2训练2.2.1使用PyTorchTrainer进行训练2.3训练超参数2.4评价2.5训练类三、使用Keras训练TensorFlow模型3.1为Keras加载数据3.2将数据加载为tf.data.Dataset3.3数据加载器3.4优化器和学习率调度器3.5训练循环3.6评价四、结论一、说明 使用预训练模
- 数据分析及人工智能框架汇总
xihuanyuye
机器学习
一、数据分析二、人工智能1、Tensorflow1、简介TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。Tenso
- 本地部署时,如何通过硬件加速(如 CUDA、TensorRT)提升 DeepSeek 的推理性能?不同显卡型号的兼容性如何测试?
百态老人
人工智能科技算法vscode
本地部署DeepSeek模型的硬件加速优化与显卡兼容性测试指南一、硬件加速技术实现路径CUDA基础环境搭建版本匹配原则:根据显卡架构选择CUDA版本(如NVIDIARTX50系列需CUDA12+,V100需CUDA11.x),并通过nvcc--version验证安装。GPU加速验证:运行以下代码检查硬件加速状态:importtensorflowastfprint("可用GPU数量:",len(tf
- 训练大模型LLM选择哪种开发语言最好
大0马浓
人工智能训练python
训练大型语言模型(LLM)时,选择合适的编程语言主要取决于效率、生态支持、开发便利性以及特定需求(如性能优化或硬件适配)。以下是常见语言的分析和推荐:---1.Python(首选语言)优势:-生态系统丰富:主流深度学习框架(PyTorch、TensorFlow、JAX)均以Python为主要接口,提供完整的工具链(数据处理、模型训练、评估部署)。-开发效率高:语法简洁,适合快速实验和原型开发,社区
- 开发ai模型最佳的系统是Ubuntu还是linux?
俺足
人工智能ubuntu
在AI/ML开发中,Ubuntu是更优选的Linux发行版,原因如下:1.开箱即用的AI工具链支持Ubuntu预装了主流的AI框架(如TensorFlow、PyTorch)和依赖库,且通过apt包管理器可快速部署开发环境。提供针对NVIDIAGPU的官方驱动支持,简化CUDA和cuDNN的配置流程(如nvidia-smi直接监控显存)。2.社区生态与长期维护(LTS)UbuntuLTS版本(如24
- 如何增强机器学习基础,提升大模型面试通过概率
weixin_40941102
机器学习面试人工智能
我的好朋友没有通过面试所以我给我的好朋友准备了这一篇学习路线随着大模型(如Transformer、GPT-4、LLaMA等)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中的广泛应用,AI行业的招聘竞争愈发激烈。面试官不仅要求候选人熟练使用深度学习框架(如PyTorch、TensorFlow),还希望他们具备扎实的机器学习理论基础、算法实现能力和实际问题解决经验。本文将从机器学习基础入手
- 机器学习入门指南:从 TensorFlow 到 PyTorch
6v6-博客
机器学习tensorflowpytorch
机器学习入门指南:从TensorFlow到PyTorch机器学习(MachineLearning)是人工智能的核心领域之一,近年来在图像识别、自然语言处理、推荐系统等领域取得了巨大进展。本文将从基础概念入手,介绍机器学习的核心知识,并带你快速上手两大主流框架:TensorFlow和PyTorch。机器学习基础什么是机器学习?机器学习是一种通过数据训练模型,使计算机能够自动学习和改进的技术。它主要分
- 多模态大模型:技术原理与实战 模型压缩实战
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战模型压缩实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大模型,技术原理,模型压缩,实战,TensorFlow,PyTorch,模型压缩方法,应用场景1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,多模态大模型在图像识别、语音识别、自然语言处理等领域的应用越来越广泛。然而,多模态大模型通常具有庞大
- python可應用在金融分析的那一個方面,如何部署在linux server上面。
蠟筆小新工程師
金融
Python在金融分析中應用廣泛,以下是幾個主要方面:###1.**數據處理與分析**-使用**Pandas**和**NumPy**等庫來處理和分析大規模數據集,進行清理、轉換和統計運算。-舉例:處理歷史市場數據,分析價格趨勢、交易量等。###2.**機器學習與預測**-使用**scikit-learn**、**TensorFlow**或**PyTorch**建立模型進行股票價格預測、信用風險評估
- tensorflow keras 报错 :No gradients provided for any variable 原因与解决办法
研志必有功
tensorflow报错tensorflow深度学习机器学习神经网络自然语言处理
错误分析Nogradientsprovidedforanyvariable这个意思是没有梯度给已知的所有函数,为什么会出现这个错误呢,因为在深度学习中,梯度的更新是由于反向传播算法的实现的,如果损失函数没有与已知的任何(除输入)层关联,那么,损失函数就无法求出关于各个函数的梯度,导致错误解决办法例如损失函数defcontrastive_loss_layer(left_inputs,right_in
- TensorFlow的基本框架和理解-初学者通过这一篇文章就够了
无人不智能,机器不学习
TensorFlowTensorFlow基本框架python
tensorflow的理解Tensorflow是一种机器学习框架,如果我们有大量的数据,我们可以利用他协助医生检查糖尿病性视网膜病变来预防患者失明等应用新版本中一个有趣的功能是eagerexecution,允许用户在不创建图形的情况下运行tensorflow代码,一种动态图机制它是一个命令式、由运行定义的接口,一旦从Python被调用,其操作立即被执行。这使得入门TensorFlow变的更简单,也
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分