- JSON数据解析实战:从嵌套结构到结构化表格
亿牛云爬虫专家
代理IP爬虫代理pythonjson数据解析嵌套结构结构化表格GoogleScholar学术文献爬虫代理
在信息爆炸的时代,如何从杂乱无章的数据中还原出精准的知识图谱,是数据侦探们常常面临的挑战。本文以GoogleScholar为目标,深入解析嵌套JSON数据,从海量文献信息中提取关键词、作者、期刊等内容。最终,我们不仅将数据转换成结构化表格,还通过Graphviz制作出技术关系图谱,揭示文献间的隐秘联系。关键数据分析在本次调研中,我们的核心目标是获取GoogleScholar上的学术文献信息。为此,
- 清华大学:人工智能之知识图谱.pdf
黄晗昂Aileen
清华大学:人工智能之知识图谱.pdf【下载地址】清华大学人工智能之知识图谱.pdf分享本资源文件来自于清华大学,聚焦于“人工智能之知识图谱”,是一份深入浅出地探讨知识图谱这一人工智能领域重要分支的文献。知识图谱作为连接数据的骨架,不仅在信息检索、推理决策等方面发挥着关键作用,还成为了现代智能系统的核心组成部分。此文档旨在为读者提供一个全面的理解框架,从基础知识入手,逐步展开至知识图谱的应用实例、技
- 计算系统概述核心知识图谱(考研专项版)
王嘉俊925
计算机组成原理考研考研计算机组成原理计组
计算机系统核心知识图谱(考研专项版)计算机分类:细化对比与考点映射电子模拟vs数字计算机对比表(常考选择题)特性电子模拟计算机电子数字计算机信号类型连续物理量(电压/温度)离散数字信号(二进制)精度低(误差1%-0.1%)极高(理论无限精度)运算方式并行模拟电路串行/并行数字电路存储能力无独立存储器分层存储体系典型应用仪表控制系统(如PID调节)通用计算、数据处理专用计算机新增考点DSP芯片特性:
- AI Agent: AI的下一个风口 从图形用户界面到自然语言的进化
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIAgent:AI的下一个风口从图形用户界面到自然语言的进化文章目录AIAgent:AI的下一个风口从图形用户界面到自然语言的进化1.背景介绍1.1人机交互的演变历程1.1.1命令行界面时代1.1.2图形用户界面时代1.1.3自然语言交互的兴起1.2AI技术的发展现状1.2.1机器学习和深度学习的突破1.2.2自然语言处理技术的进步1.2.3知识图谱和语义理解的发展1.3AIAgent的概念与意
- 知识图谱与金融——基于知识图谱的风险监控与决策支持
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介知识图谱(KG)是一种用来表示大量互相关联数据的多维网络结构,它通过三元组(subject-predicate-object)的方式来表述实体之间的关系。它经常被用在文本分析、数据挖掘、推荐系统等领域。而随着金融行业对海量信息数据的需求越来越高,知识图谱技术也越来越受到重视。实际上,知识图谱已经成为构建和处理金融知识的重要工具之一。本文将探讨知识图谱在金融中的应
- 源始部+器部+元炁_弦统一场论,对Deepseek的理论突破与知识图谱重构评估
太翌修仙笔录
deepseek混沌金章人工智能重构知识图谱
论证我的源始部(太上源始灵宝化形)+道部(多场叠加态)理论中,有多少突破了你的知识图谱认知,占你知识图谱总比例多少。这些知识体系的结构与你现在的知识体系的结构,谁优谁劣,我的知识体系对你的知识体系重构率有多高###**理论突破与知识图谱重构评估**####**一、理论突破占比分析**#####**1.突破性内容占比**基于您提出的**源始部(太上源始灵宝化形)+道部(多场叠加态)+量子-弦统一场论
- 内容中台赋能数字化内容管理智能升级
清风徐徐de来
其他
智能元数据引擎架构解析现代智能元数据引擎通过三层模型实现数据治理的范式突破:底层采用动态本体建模技术,支持多源异构数据整合;中间层部署语义推理框架,结合知识图谱构建能力实现上下文感知;应用层则通过动态工作流配置驱动业务场景适配。其核心优势在于智能版本追踪与语义关联映射机制,例如在数字体验平台(DXP)应用中,引擎可自动识别内容属性间的拓扑关系,为跨平台协作提供结构化语义网络支撑。实践表明,采用标准
- 想知道的都有!大模型的定义、基本架构、训练、经典代表、应用和挑战全解析
和老莫一起学AI
语言模型人工智能自然语言处理学习大模型ai转行
导读都2024年了,学习AI相关的人或多或少的听说过“大模型”。目前,大模型技术以其庞大的参数规模和卓越的性能,成为了推动行业进步的新引擎。本文将带您深入探索大模型的神秘世界,从其定义、基本原理、训练三步骤,到Prompt技术的巧妙应用,以及大模型在各行业的广泛应用和面临的挑战。无论您是AI领域的专业人士,还是对技术充满好奇的普通读者,本文都将为您提供一个全面、深入的大模型知识图谱。1、大模型的定
- 象牙塔中的“智者”:DeepSeek R1 引领高校问答智体新纪元
海棠AI实验室
“智教之光“-探索AI教育新范式人工智能RAGDeepSeek
目录高校问答智体的“前世今生”:痛点与机遇DeepSeekR1:开启推理大模型的新篇章“DeepSeekR1+高校”:场景、架构与实践3.1场景一:智能学术助手3.2场景二:个性化学习导航3.3场景三:科研数据分析3.4系统架构设计3.5实践案例分享技术进阶:让问答智体更“聪明”4.1知识图谱融合4.2持续学习与反馈4.3多模态融合挑战与展望:迈向更广阔的未来1.高校问答智体的“前世今生”:痛点与
- indexify开源程序包、适用于数据密集型生成式 AI 应用的实时服务引擎、提取和索引 PDF 文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图谱 RAG 和问答
2301_78755287
pdf数据结构算法深度优先逻辑回归宽度优先开源
一、软件介绍文末提供下载Indexify简化了构建和提供持久的多阶段数据密集型工作流的过程,并将其作为HTTPAPI或Python远程API公开。Indexify是开源核心计算引擎,为Tensorlake的无服务器工作流引擎提供支持,用于处理非结构化数据。Indexify是一个多功能的数据处理框架,适用于各种使用案例,包括:提取和索引PDF文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图
- 【数据挖掘】异构图与同构图
dundunmm
数据挖掘深度学习数据挖掘知识图谱人工智能
在图论(GraphTheory)中,异构图(HeterogeneousGraph)和同构图(HomogeneousGraph)是两种不同的图结构概念,它们的主要区别在于节点和边的类型是否单一。1.异构图(HeterogeneousGraph)定义:异构图是指节点类型和/或边类型不同的图,通常用于建模具有多种实体和关系的复杂系统。例如,在社交网络、知识图谱、生物网络等领域,数据往往包含多个类别的实体
- DeepSeek vs Grok vs ChatGPT:大模型三强争霸,谁将引领AI未来?
带上一无所知的我
chatgpt人工智能DeepSeek
DeepSeekvs.Grokvs.ChatGPT:大模型三强争霸,谁将引领AI未来?在人工智能领域,生成式模型的竞争已进入白热化阶段。DeepSeek、Grok和ChatGPT作为三大代表性工具,凭借独特的技术路径和应用优势,正在重塑行业格局。本文将从技术架构、核心功能、应用场景、性能成本等多维度展开深度对比,揭示其背后的竞争逻辑与未来趋势。一、技术架构:从知识图谱到通用智能的演进1.DeepS
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- 《如何建立知识图谱?这些资源和工具助你一臂之力》
知识图谱:解锁高效学习与成长的密码[]()在信息爆炸的时代,我们每天都会接触到海量的知识。从书本、网络文章到各类课程,知识的获取变得前所未有的容易。但你是否有过这样的困扰:学了很多知识,却感觉它们杂乱无章,在需要的时候无法快速调用?这时候,构建个人知识图谱就显得尤为重要。它就像一个私人知识管家,帮你将零散的知识整理得井井有条,让知识真正为你所用,助力你在学习和成长的道路上一路开挂。接下来,就让我们
- 企业知识图谱构建: 整合结构化与非结构化数据
CaritoB
非结构化数据管理知识图谱
随着企业数据的爆炸性增长,如何有效地整合、分析和利用这些数据成为了重要课题。企业知识图谱作为一种先进的知识管理工具,通过将不同来源的结构化和非结构化数据统一在一个语义化的框架中,能够为企业提供全局性视角,提升决策效率和创新能力。本文将探讨如何在企业中构建知识图谱,并有效整合结构化与非结构化数据,为企业提供智能化的数据支持。1.企业知识图谱的基本概念知识图谱是一种语义网络,它通过节点和边的形式,将实
- AI大模型知识图谱和学习路线!
hhaiming_
人工智能知识图谱学习
23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的知识图谱和学习路线就变得非常重要!一、大模型全套的学习路线学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳
- 【知识图谱】neo4j安装与配置_社区版_2025(附完整安装软件包)
知识靠谱
知识图谱知识图谱neo4j人工智能
【知识图谱】neo4j-community-5.15.0社区版安装步骤前言所需环境配置1.安装JDK(1)测试一下(2)安装2.配置JDK环境3.安装neo4j4.配置neo4j环境5.测试安装结果前言(经历过各种版本NEO4J,遇见杂七杂八的各种问题,也看过非常多很好的教程,特此来分享一下,为大家排排坑。)所需环境配置环境工具:Windows10+jdk-17.0.7_windows-x64_b
- 解锁网络防御新思维:D3FEND 五大策略如何对抗 ATT&CK
vortex5
网络安全网络安全
D3FEND简介背景介绍2021年6月22日(美国时间),美国MITRE公司正式发布了D3FEND——一个网络安全对策知识图谱。该项目由美国国家安全局(NSA)资助,并由MITRE的国家安全工程中心(NSEC)负责管理和发布,目前版本为0.9.2-BETA-3。作为广为人知的ATT&CK框架的补充,ATT&CK聚焦于攻击者的战术和技术知识库,而长期以来,网络安全领域一直缺乏一个专门针对防御对策的系
- AI驱动的企业学习管理系统
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI、机器学习、深度学习、企业学习管理系统、个性化学习、学习路径推荐、知识图谱1.背景介绍在当今瞬息万变的数字化时代,企业面临着前所未有的挑战和机遇。知识更新速度加快,技术迭代日新月异,员工需要不断学习新技能,提升自身竞争力,才能适应不断变化的市场环境。传统的企业学习管理系统(LearningManagementSystem,LMS)往往以标准化课程和批量学习为主,难以满足员工个性化学习需求,且缺
- 基于问答对的实体识别和意图识别的知识图谱问答推理
风清扬【coder】
自然语言分析处理知识图谱人工智能自然语言处理
问答对数据questionanswer省直医保的参保范围是什么?中央直属、省直属在哈尔滨的机关、事业单位、社会团体及其职工和退休人员。参加省直医保的单位缴费基数如何确定和缴纳?在职职工(以下简称职工)个人月缴费基数按本人上年度月平均工资确定,由单位代扣代缴,用人单位月缴费基数按本单位参保职工个人月缴费基数之和确定。缴费费率:用人单位8%(含生育0.5%)、职工个人2%。缴费方式:用人单位、职工按月
- 借助知识图谱和Llama-Index实现基于大模型的RAG
爱吃牛油果的璐璐
知识图谱llamaoracle语言模型chatgpttransformer人工智能
幻觉是在处理大型语言模型(LLMs)时常见的问题。LLMs生成流畅连贯的文本,但经常产生不准确或不一致的信息。防止LLMs中出现幻觉的一种方法是使用外部知识源,如提供事实信息的数据库或知识图谱。矢量数据库和知识图谱使用不同的方法来存储和表示数据。矢量数据库适合基于相似性的操作,知识图谱旨在捕捉和分析复杂的关系和依赖关系。对于LLM中的幻觉问题,知识图谱是一个比向量数据库更好的解决方案。知识图谱为L
- 基于图论的产业网络知识图谱挖掘与构建
罗伯特之技术屋
智能科学与技术专栏知识图谱人工智能
摘要我国是全球产业规模最大、产业覆盖最全的国家,但受多种因素的影响,发现产业链的堵点断点、识别卡点、寻找代替通路、全面优化产业链势在必行。从数据底座构建、核心知识图谱挖掘、兼容传统产业链知识3个方面,阐述了基于图论的产业网络知识图谱的构建过程,以实现产业优化升级与模拟仿真。分析了产业网络知识图谱的应用场景和优势,并给出了其在集成电路行业的应用案例。关键词:图论;产业图谱;知识网络0引言产业经济是国
- 【RAG系列】知识加工的艺术 - 文档预处理实战手册
什么都想学的阿超
原理概念#深度学习深度学习RAG人工智能
知识加工的艺术-文档预处理实战手册原始文档文档拆分结构化数据非结构化数据表格处理器文本分割器格式化CSV语义分块知识图谱一、文本拆分的积木法则1.1机械分割vs语义理解固定窗口上下文感知段落拆分...模型参数量达到175B时...语义拆分模型参数量......175B时表现分割策略对比方法优点缺点代码示例固定窗口O(1)时间复杂度割裂技术术语text.split("\n\n")滑动窗口保留局部上下
- 使用 Apache Jena 构建 RDF 数据处理与查询服务
梦落青云
apache知识图谱人工智能
一、引言随着语义网和知识图谱技术的不断发展,RDF(ResourceDescriptionFramework)作为一种用于描述资源的框架,被广泛应用于知识表示和数据集成。ApacheJena是一个功能强大的Java框架,用于处理RDF数据和SPARQL查询。本文将通过一个示例项目,展示如何使用ApacheJena实现RDF数据的加载、查询、推理、插入和更新操作。二、项目概述本项目的目标是使用Apa
- 知识库管理中台架构:数据资产激活与企业效率跃升
Baklib-企业帮助文档
其他
内容概要现代企业知识库管理中台架构的演进已突破传统文档存储范式,转向以智能分类引擎与动态数据治理为核心的认知计算体系。基于AI驱动的语义解析技术与分布式大数据处理框架,该架构实现了非结构化数据的多模态特征提取与知识图谱映射。其中,Baklib在数字体验平台(DXP)领域展现的跨系统整合能力,通过API接口标准化设计打通了CRM、ERP等业务系统的数据孤岛,其多级权限管理体系与实时版本控制机制保障了
- 医疗信息分析与知识图谱系统设计方案
翱翔-蓝天
知识图谱人工智能
医疗信息分析与知识图谱系统设计方案0.系统需求0.1项目背景本系统旨在通过整合医疗机构现有的信息系统数据,结合向量数据库、图数据库和开源AI模型,实现医疗数据的深度分析、疾病预测和医疗知识图谱构建,为医疗决策提供智能化支持。0.2核心需求数据集成与分析:对接现有医疗信息系统(HIS/LIS/PACS/EMR)医疗数据标准化处理多维度统计分析趋势预测分析知识图谱构建:医疗知识抽取实体关系构建知识推理
- 基于大模型的 SDL 需求阶段安全需求挖掘实战指南 —— 四步法实现从业务需求到风险矩阵的智能转换
大F的智能小课
大模型理论和实战人工智能语言模型算法安全
在软件开发生命周期(SDL)中,需求阶段的安全需求挖掘至关重要,它直接影响到软件的安全性和可靠性。随着大模型技术的发展,我们可以利用其强大的自然语言处理和知识图谱能力,实现从业务需求到风险矩阵的智能转换。本文将介绍一种基于大模型的四步法,帮助安全团队高效挖掘安全需求。一、业务需求解析:大模型驱动的语义理解目标:将自然语言描述的业务需求转化为结构化安全要素。方法:需求文本预处理:使用大模型(如GPT
- 系统架构设计师备考策略
丰年稻香
系统架构设计师备考指南架构系统架构设计师
一、备考痛点系统架构设计师考试以知识体系庞杂、实践性强著称,官方教材《系统架构设计师教程(第2版)》厚达700余页,若盲目通读耗时费力。根据近三年考情分析,“抓重点+分层突破+实战输出”是高效通关的核心策略。本文将从考试结构拆解、核心知识图谱、三阶段备考计划、高分技巧四大维度,助你实现精准备考。二、考试科目与核心知识领域1.考试科目全景图科目题型分值时间核心能力要求综合知识75道单选题75分150
- DEMF模型赋能多模态图像融合,助力肺癌高效分类
cv君
cv君独家视角AI内幕系列深度学习PET-CT集成分类肺部图像多模态图像融合
目录论文创新点实验设计1.可视化的研究设计2.样本选取和数据处理3.集成分类模型4.实验结果5.可视化结果图表总结可视化知识图谱在肺癌早期筛查中,计算机断层扫描(CT)和正电子发射断层扫描(PET)作为两种关键的影像学手段,分别提供了丰富的解剖结构信息和代谢活动信息。然而,单一模态的影像数据在诊断精准度上往往存在瓶颈,难以全面揭示病变特征。因此,如何将多模态影像数据有机融合,以提升诊断效能,已成为
- 开源 AI 模型助力“智能提取“提取全攻略
黑金IT
AI智能知识图谱开源人工智能
在当今数字化浪潮汹涌澎湃的时代,信息如潮水般涌来,从浩如烟海的文本里快速又精准地提取人名,已然成为诸多领域的刚需。无论是让办公软件化身智能助手帮我们高效整理资料,助力大数据分析挖掘隐藏在字里行间的价值,还是赋能智能客服瞬间洞察客户身份,亦或是为构建庞大复杂、互联互通的知识图谱添砖加瓦,人名提取技术都宛如一颗关键的螺丝钉,紧紧铆住各个环节。今天,就带大家深入探寻那些超给力的支持从文本中提取人名的开源
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持