- 算法工程师必备:数据结构10大经典算法详解
数据结构与算法学习
数据结构与算法宝典算法数据结构ai
算法工程师必备:数据结构10大经典算法详解关键词:数据结构、经典算法、时间复杂度、应用场景、代码实现摘要:本文是算法工程师的“算法工具箱”指南,系统讲解数据结构领域最核心的10大经典算法(快速排序、归并排序、二分查找、深度优先搜索DFS、广度优先搜索BFS、动态规划、贪心算法、KMP字符串匹配、哈希算法、并查集)。通过生活案例、代码示例、复杂度分析和实战场景,帮你彻底掌握这些算法的原理与应用,真正
- C# 实现:动态规划解决 0/1 背包问题
江沉晚呤时
C#算法代理模式.netcorec#microsoft.net.netcore算法
在生活中,我们经常面临选择和优化的问题。例如:在有限的资源(如时间、金钱、空间等)下,如何选择最有价值的物品?背包问题(KnapsackProblem)就是一种经典的优化问题,广泛应用于项目选择、投资决策、行李打包等领域。今天,我们将深入探讨0/1背包问题,并通过动态规划方法给出一种高效的解决方案。0/1背包问题0/1背包问题的基本描述是:给定一个容量为C的背包。有n个物品,每个物品有一个重量w[
- 动态规划入门(LIS模板)
动态规划是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法能用动态规划解决的问题,需要满足三个条件:最优子结构,无后效性和子问题重叠目录最长上升子序列(LIS)基本思路最长上升子序列贪心优化(二分优化)合唱队形参加算法竞赛!最长上升子序列(LIS)基本思路在做这种类型的题目时我们需要注意明确题目要求的状态一般来说题目问什么,我们的dp[]数组就可以用来表示什么状态之间的转移变换当下状
- 章节十四:乱序中的“指挥家”:堆排序奥义 - (堆排序 / Heap Sort)
杨小扩
常用算法详解算法
各位老铁,阿扩又来啦!前面我们聊了各种数据结构和算法,从基础的排序查找,到复杂的图算法、动态规划,再到巧妙的Trie树和布隆过滤器。今天,我们要再次回到排序算法的舞台,但这次的主角,可不是简单的“冒泡”或“选择”,而是一位在乱序中能高效组织、精准定位的“指挥家”——堆排序(HeapSort)!你可能听说过快速排序、归并排序,它们都是O(NlogN)级别的排序算法。堆排序也同样拥有这个优秀的性能,而
- LeetCode 72. 编辑距离(Edit Distance)| 动态规划详解
72.编辑距离题目描述给你两个单词word1和word2,请计算将word1转换为word2所需的最少操作数。你可以对一个单词进行以下三种操作:插入一个字符删除一个字符替换一个字符✅示例输入:word1="horse",word2="ros"输出:3解释:horse->rorse(替换h为r)rorse->rose(删除r)rose->ros(删除e)解题思路:动态规划(DP)✅状态定义dp[i]
- c语言找出递增子数组的长度,C语言实现最长递增子序列问题的解决方法
梁肖松
c语言找出递增子数组的长度
本文实例展示了C语言实现最长递增子序列问题的解决方法。分享给大家供大家参考。具体方法如下:问题描述:给定一个序列,找出其最长递增子序列长度。比如输入1375输出3算法解决思路:利用动态规划的思想,以序列的每个点最为最右端,找出每个点作为最右端时的子序列长度的最大值,即问题的求解。因此,在计算前面的每个点的时候,将其结果保存下来,后面的点与前面的点的数值进行比较,如果大,则在其长度基础上加1,并且找
- LeetCode第337题_打家劫舍III
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习
LeetCode第337题:打家劫舍III文章摘要本文详细解析LeetCode第337题"打家劫舍III",这是一道中等难度的二叉树动态规划问题。文章提供了基于深度优先搜索和动态规划的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升二叉树和动态规划能力的程序员。核心知识点:二叉树、动态规划、深度优先搜索难度等级:中等推荐人群:具有基础数据结构知识,想要提
- LeetCode(Java)
发现了中文版的leetCode,网址在https://leetcode-cn.com70.爬楼梯题目地址:https://leetcode-cn.com/problems/climbing-stairs/submissions/解题思路:最简单的动态规划题目,状态方程与斐波那契数列相同。publicintclimbStairs(intn){if(ntarget){r--;}else{l++;}}r
- 算法:动态规划 洛谷 P8776 [蓝桥杯 2022 省 A] 最长不下降子序列
健仙
算法动态规划蓝桥杯
思路:首先,这题你得先会(nlogn)复杂度的求最长不下降子序列方法。我们可以直接让k个数从下标为1开始,滑动到末端,这k个数就不用看它,因为我们把他设置成k个数后面的数,所以答案先加上k,然后我们看预处理每一个数从他开始(包括这个数)后面的最长不下降子序列,把长度放入b数组中,这样我们答案就是k加上b【k+1】,然后我们看k前面的数,k前面的数不是让答案加上前面的最长不下降子序列,因为此时我们有
- 算法竞赛备赛——【图论】求最短路径——Floyd算法
Aurora_wmroy
算法竞赛备赛算法图论c++蓝桥杯数据结构
floyd算法基于动态规划应用:求多源最短路时间复杂度:n^3dijkstra:不能解决负边权floyd:能解决负边权不能解决负边权回路问题求最短路径:dijkstrabfsfloyd思路1.让任意两点之间的距离变短:引入中转点k通过k来中转i---->k---->jj2.找状态:n个点都可以做中转点的情况下,i到j之间的最短路径的长度是x最终状态:dp[n][i][j]=x;中间状态:dp[k]
- 爬楼梯——动态规划
不吃鱼的猫
算法动态规划算法leetcode
文章目录题目一解法一:动态规划题目二解法:题目一假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?解法一:动态规划将dp[i]数组定义为到达第i阶楼梯有多少种方法,由每次可以爬1或2阶可以得到递推公式:dp[i]=dp[i−1]+dp[i−2]dp[i]=dp[i-1]+dp[i-2]dp[i]=dp[i−1]+dp[i−2]其中,dp[i-1
- 动态规划之爬楼梯
LeetCode地址:爬楼梯假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?注意:给定n是一个正整数。示例1:输入:2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:3输出:3解释:有三种方法可以爬到楼顶。-1阶+1阶+1阶-1阶+2阶-2阶+1阶第一种方法动态规划1.确定dp数组dp[i]爬到第i层楼梯,有dp[i
- 力扣第70题:爬楼梯 动态规划DP入门(C++)
Daking-
leetCode耐刷王leetcode动态规划算法c++
假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶思路什么叫动态规划?我们分割原始问题为多个子问题,在遍历数据的过程中,如果能根据之前得到的信息动态解决当前的子
- Java数据结构与算法(爬楼梯动态规划)
盘门
java数据结构与算法实战java动态规划开发语言
前言爬楼梯就是一个斐波那契数列问题,采用动态规划是最合适不过的。实现原理初始化:dp[0]=1;dp[1]=2;转移方程:dp[i]=dp[i-1]+d[i-2];边界条件:无具体代码实现classSolution{publicintclimbStairs(intn){if(n==1){return1;}int[]dp=newint[n];dp[0]=1;dp[1]=2;for(inti=2;i<
- 爬楼梯(动态规划)
AWEN_33
算法
假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶c初解(动态规划):classSolution{public:intclimbStairs(intn){//处
- 经典动态规划
最长上升子序列](https://www.luogu.com.cn/problem/B3637)题目描述这是一个简单的动规板子题。给出一个由n(n≤5000)n(n≤5000)n(n≤5000)个不超过10610^6106的正整数组成的序列。请输出这个序列的最长上升子序列的长度。最长上升子序列是指,从原序列中按顺序取出一些数字排在一起,这些数字是逐渐增大的。输入格式第一行,一个整数n,表示序列长度
- 【动态规划】 线性DP1——经典回顾
【动态规划】系列文章线性DP1.【动态规划】线性DP1——经典回顾2.【动态规划】线性DP2——进阶1【动态规划】线性DP1——经典回顾【动态规划】新的开始经典DP回顾最长递增子序列(LIS)题目链接题目分析DP代码O(n2)O(n^2)O(n2)补充算法O(nlogn)O(nlogn)O(nlogn)最长公共子序列(LCS)题目链接题目分析代码数字三角形题目链接题目分析自上而下代码自下而上代码新
- 区间DP 石子合并 C++
小超超爱学习9937
c++开发语言算法数据结构学习
区间DP是一种动态规划的方法,用于解决涉及区间的问题。它通常应用于需要确定区间的最优解或最值的情况下。石子合并问题是一个经典的区间DP问题,可以用区间DP方法解决。给定一行n个石子,每个石子有一个价值,现要将石子合并成若干堆,每次只能选择相邻的两堆进行合并,合并的得分为两堆石子的总价值,合并后的新堆的价值为得分。求合并到最后,最终得到的堆的最大价值。要求解石子合并问题,可以定义一个dp数组,dp[
- 五大编程竞赛平台终极对比
2401_86601498
c++
LeetCodeLeetCode是一个流行的在线编程平台,提供大量算法和数据结构题目。题目分为简单、中等和困难三个难度级别。LeetCode的题目涵盖各种主题,包括数组、字符串、树、动态规划等。LeetCode支持多种编程语言,包括C++,并提供在线代码编辑器和即时反馈。LeetCode还提供竞赛和面试模拟功能,适合准备技术面试的用户。CodeforcesCodeforces是一个以竞赛为主的在线
- 代码随想录算法训练营总结篇
m0_74934708
算法
第一次接触卡哥的课程是在大二上,当时做N皇后的题目看到卡哥的视频觉得大受裨益,就想着有时间能够刷完卡哥录制的整期课程,后面有算法训练营的监督让我很幸运地坚持了六十天,学到了很多东西,像贪心算法、动态规划、单调栈以及在二叉树里使用BFS和DFS,都是一些很美妙的思路。这次一刷leetcode后面要去学学前端了,等到暑假有时间希望可以跟着卡哥二刷leetcode。学会算法后再去做题有些痛苦,但做出来的
- Leetcode3202. 找出有效子序列的最大长度 II
EverydayaLeetcode题目来源:3202.找出有效子序列的最大长度II解法1:动态规划本题是选与不选的子序列问题,可以尝试给出这样的状态定义:dp[i][j]:以nums[i]结尾模k后值为j的最长子序列的长度。那么状态转移方程是怎样的呢?对于每一个i,遍历j(0&nums,intk){intn=nums.size();//dp[i][j]:以nums[i]结尾模k后值为j的最长子序列
- 【华为机试】HJ61 放苹果
不爱熬夜的Coder
算法华为机试golang华为golang算法面试
文章目录HJ61放苹果描述输入描述输出描述示例1示例2解题思路算法分析问题本质分析状态定义与转移递推关系详解动态规划表构建算法流程图示例推导过程代码实现思路时间复杂度分析关键优化点边界情况处理递归解法对比实际应用场景测试用例分析算法特点数学原理完整题解代码HJ61放苹果描述我们需要将m个相同的苹果放入n个相同的盘子中,允许有的盘子空着不放。求解有多少种不同的分法。输入描述输入两个整数m,n(0B[
- 2025B卷 - 华为OD机试七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、数组第3天、双指针第4天、贪心算法第5天、字符串处理第6天、深度优先搜索DFS第7天、动态规划六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSo
- 华为OD机试专栏--1.3 算法基础:1.3.3 动态规划入门
xiaoheshang_123
华为OD机试真题题库解析华为od面试职场和发展算法
目录1.3算法基础1.3.3动态规划入门一、动态规划的核心思想1.1什么是动态规划?1.2动态规划的特点二、动态规划的基本步骤三、经典动态规划问题3.1斐波那契数列(FibonacciSequence)问题描述动态规划解法代码实现(Python)3.2背包问题(KnapsackProblem)问题描述动态规划解法代码实现(Python)3.3最长公共子序列(LongestCommonSubsequ
- 前端面试专栏-算法篇:20. 贪心算法与动态规划入门
欢迎来到前端面试通关指南专栏!从js精讲到框架到实战,渐进系统化学习,坚持解锁新技能,祝你轻松拿下心仪offer。前端面试通关指南专栏主页前端面试专栏规划详情贪心算法与动态规划入门在计算机科学领域,算法是解决问题的核心工具。而贪心算法与动态规划作为两种重要的算法设计策略,广泛应用于优化问题中。本文将深入浅出地介绍这两种算法的基本概念、适用场景、实现方法,并通过经典案例帮助读者理解和掌握它们的核心思
- LeetCode题解---<接雨水>
文章目录题目法一:动态规划关于动态规划完整代码简单易理解版:官方代码:题目给定n个非负整数表示每个宽度为1的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。输入:height=[0,1,0,2,1,0,1,3,2,1,2,1]输出:6解释:上面是由数组[0,1,0,2,1,0,1,3,2,1,2,1]表示的高度图,在这种情况下,可以接6个单位的雨水(蓝色部分表示雨水)。示例2:输入:hei
- 算法设计与分析:分治、动态规划与贪心算法的异同与选择
vortex5
算法动态规划贪心算法
在计算机科学中,算法是解决问题的核心。面对复杂问题,算法设计师常常需要将其分解为更小、更易管理的子问题。分治法、动态规划和贪心算法都是基于“原问题”和“子问题”概念的强大策略,但它们在处理子问题的方式、相互关系以及最终解决方案的保证上存在本质区别。理解这些差异对于选择最适合特定问题的算法至关重要。✅一、共同点:都涉及“原问题→子问题”这三种算法范式都遵循将复杂问题分解为更简单部分的思想,这是许多高
- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- 华为OD机试 - 取零食 - 动态规划(Python/JS/C/C++ 2024 E卷 100分)
哪 吒
华为od动态规划python
2025华为OD机试题库(按算法分类):2025华为OD统一考试题库清单(持续收录中)以及考点说明(Python/JS/C/C++)。专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随
- 深入DP!!!!!!!!!!!!!!-----------------------“DP就像人生:你的当前状态由过去的选择决定,而你的选择将影响未来状态。定义好你的状态转移方程,找到最优的人生路径!“
zwenqiyu
算法
"动态规划不是魔法,而是将大问题拆解成小问题的艺术"——一位ACMer的深夜顿悟暑假集训我们过关斩将,来到了线性动态规划和前缀优化这里,不好,是让人心惊胆战的DP!!!不同于其他题解,我们在详说DP之前,我们先说说记忆化搜索。什么是记忆化搜索?记忆化搜索(Memoization)是一种优化递归算法的技术,通过存储已计算的子问题结果,避免重复计算。它是自顶向下的动态规划实现方式。模板题斐波那契数列问
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s