一、Spark内存管理模式
Spark有两种内存管理模式,静态内存管理(Static MemoryManager)和动态(统一)内存管理(Unified MemoryManager)。动态内存管理从Spark1.6开始引入,在SparkEnv.scala中的源码可以看到,Spark目前默认采用动态内存管理模式,若将spark.memory.useLegacyMode设置为true,则会改为采用静态内存管理。
// SparkEnv.scala
val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", false)
val memoryManager: MemoryManager =
if (useLegacyMemoryManager) {
new StaticMemoryManager(conf, numUsableCores)
} else {
UnifiedMemoryManager(conf, numUsableCores)
}
二、Spark动态内存管理空间分配
相比于Static MemoryManager模式,Unified MemoryManager模型打破了存储内存和运行内存的界限,使每一个内存区能够动态伸缩,降低OOM的概率。由上图可知,executor JVM内存主要由以下几个区域组成:
(1)Reserved Memory(预留内存):这部分内存预留给系统使用,默认为300MB,可通过spark.testing.reservedMemory进行设置。
// UnifiedMemoryManager.scala
private val RESERVED_SYSTEM_MEMORY_BYTES = 300 * 1024 * 1024
另外,JVM内存的最小值也与reserved Memory有关,即minSystemMemory = reserved Memory*1.5,即默认情况下JVM内存最小值为300MB*1.5=450MB。
// UnifiedMemoryManager.scala
val minSystemMemory = (reservedMemory * 1.5).ceil.toLong
(2)Spark Memeoy:分为execution Memory和storage Memory。去除掉reserved Memory,剩下usableMemory的一部分用于execution和storage这两类堆内存,默认是0.6,可通过spark.memory.fraction进行设置。例如:JVM内存是1G,那么用于execution和storage的默认内存为(1024-300)*0.6=434MB。
// UnifiedMemoryManager.scala
val usableMemory = systemMemory - reservedMemory
val memoryFraction = conf.getDouble("spark.memory.fraction", 0.6)
(usableMemory * memoryFraction).toLong
他们的边界由spark.memory.storageFraction设定,默认为0.5。即默认状态下storage Memory和execution Memory为1:1.
// UnifiedMemoryManager.scala
onHeapStorageRegionSize =
(maxMemory * conf.getDouble("spark.memory.storageFraction", 0.5)).toLong,
numCores = numCores)
(3)user Memory:剩余内存,用户根据需要使用,默认占usableMemory的(1-0.6)=0.4.
三、内存控制详解
首先我们先来了解一下Spark内存管理实现类之前的关系。
1.MemoryManager主要功能是:(1)记录用了多少StorageMemory和ExecutionMemory;(2)申请Storage、Execution和Unroll Memory;(3)释放Stroage和Execution Memory。
Execution内存用来执行shuffle、joins、sorts和aggegations操作,Storage内存用于缓存和广播数据,每一个JVM中都存在着一个MemoryManager。构造MemoryManager需要指定onHeapStorageMemory和onHeapExecutionMemory参数。
// MemoryManager.scala
private[spark] abstract class MemoryManager(
conf: SparkConf,
numCores: Int,
onHeapStorageMemory: Long,
onHeapExecutionMemory: Long) extends Logging {
创建StorageMemoryPool和ExecutionMemoryPool对象,用来创建堆内或堆外的Storage和Execution内存池,管理Storage和Execution的内存分配。
// MemoryManager.scala
@GuardedBy("this")
protected val onHeapStorageMemoryPool = new StorageMemoryPool(this, MemoryMode.ON_HEAP)
@GuardedBy("this")
protected val offHeapStorageMemoryPool = new StorageMemoryPool(this, MemoryMode.OFF_HEAP)
@GuardedBy("this")
protected val onHeapExecutionMemoryPool = new ExecutionMemoryPool(this, MemoryMode.ON_HEAP)
@GuardedBy("this")
protected val offHeapExecutionMemoryPool = new ExecutionMemoryPool(this, MemoryMode.OFF_HEAP)
默认情况下,不使用堆外内存,可通过saprk.memory.offHeap.enabled设置,默认堆外内存为0,可使用spark.memory.offHeap.size参数设置。
// All the code you will ever need
final val tungstenMemoryMode: MemoryMode = {
if (conf.getBoolean("spark.memory.offHeap.enabled", false)) {
require(conf.getSizeAsBytes("spark.memory.offHeap.size", 0) > 0,
"spark.memory.offHeap.size must be > 0 when spark.memory.offHeap.enabled == true")
require(Platform.unaligned(),
"No support for unaligned Unsafe. Set spark.memory.offHeap.enabled to false.")
MemoryMode.OFF_HEAP
} else {
MemoryMode.ON_HEAP
}
}
// MemoryManager.scala
protected[this] val maxOffHeapMemory = conf.getSizeAsBytes("spark.memory.offHeap.size", 0)
释放numBytes字节的Execution内存方法
// MemoryManager.scala
def releaseExecutionMemory(
numBytes: Long,
taskAttemptId: Long,
memoryMode: MemoryMode): Unit = synchronized {
memoryMode match {
case MemoryMode.ON_HEAP => onHeapExecutionMemoryPool.releaseMemory(numBytes, taskAttemptId)
case MemoryMode.OFF_HEAP => offHeapExecutionMemoryPool.releaseMemory(numBytes, taskAttemptId)
}
}
释放指定task的所有Execution内存并将该task标记为inactive。
// MemoryManager.scala
private[memory] def releaseAllExecutionMemoryForTask(taskAttemptId: Long): Long = synchronized {
onHeapExecutionMemoryPool.releaseAllMemoryForTask(taskAttemptId) +
offHeapExecutionMemoryPool.releaseAllMemoryForTask(taskAttemptId)
}
释放numBytes字节的Stoarge内存方法
// MemoryManager.scala
def releaseStorageMemory(numBytes: Long, memoryMode: MemoryMode): Unit = synchronized {
memoryMode match {
case MemoryMode.ON_HEAP => onHeapStorageMemoryPool.releaseMemory(numBytes)
case MemoryMode.OFF_HEAP => offHeapStorageMemoryPool.releaseMemory(numBytes)
}
}
释放所有Storage内存方法
// MemoryManager.scala
final def releaseAllStorageMemory(): Unit = synchronized {
onHeapStorageMemoryPool.releaseAllMemory()
offHeapStorageMemoryPool.releaseAllMemory()
}
2.接下来我们了解一下,UnifiedMemoryManager是如何对内存进行控制的?动态内存是如何实现的呢?
UnifiedMemoryManage继承了MemoryManager
// UnifiedMemoryManage.scala
private[spark] class UnifiedMemoryManager private[memory] (
conf: SparkConf,
val maxHeapMemory: Long,
onHeapStorageRegionSize: Long,
numCores: Int)
extends MemoryManager(
conf,
numCores,
onHeapStorageRegionSize,
maxHeapMemory - onHeapStorageRegionSize) {
重写了maxOnHeapStorageMemory方法,最大Storage内存=最大内存-最大Execution内存。
// UnifiedMemoryManage.scala
override def maxOnHeapStorageMemory: Long = synchronized {
maxHeapMemory - onHeapExecutionMemoryPool.memoryUsed
}
核心方法acquireStorageMemory:申请Storage内存。
// UnifiedMemoryManage.scala
override def acquireStorageMemory(
blockId: BlockId,
numBytes: Long,
memoryMode: MemoryMode): Boolean = synchronized {
assertInvariants()
assert(numBytes >= 0)
val (executionPool, storagePool, maxMemory) = memoryMode match {
//根据不同的内存模式去创建StorageMemoryPool和ExecutionMemoryPool
case MemoryMode.ON_HEAP => (
onHeapExecutionMemoryPool,
onHeapStorageMemoryPool,
maxOnHeapStorageMemory)
case MemoryMode.OFF_HEAP => (
offHeapExecutionMemoryPool,
offHeapStorageMemoryPool,
maxOffHeapMemory)
}
if (numBytes > maxMemory) {
// 若申请内存大于最大内存,则申请失败
logInfo(s"Will not store $blockId as the required space ($numBytes bytes) exceeds our " +
s"memory limit ($maxMemory bytes)")
return false
}
if (numBytes > storagePool.memoryFree) {
// 如果Storage内存池没有足够的内存,则向Execution内存池借用
val memoryBorrowedFromExecution = Math.min(executionPool.memoryFree, numBytes)//当Execution内存有空闲时,Storage才能借到内存
executionPool.decrementPoolSize(memoryBorrowedFromExecution)//缩小Execution内存
storagePool.incrementPoolSize(memoryBorrowedFromExecution)//增加Storage内存
}
storagePool.acquireMemory(blockId, numBytes)
}
核心方法acquireExecutionMemory:申请Execution内存。
// UnifiedMemoryManage.scala
override private[memory] def acquireExecutionMemory(
numBytes: Long,
taskAttemptId: Long,
memoryMode: MemoryMode): Long = synchronized {//使用了synchronized关键字,调用acquireExecutionMemory方法可能会阻塞,直到Execution内存池有足够的内存。
...
executionPool.acquireMemory(
numBytes, taskAttemptId, maybeGrowExecutionPool, computeMaxExecutionPoolSize)
}
方法最后调用了ExecutionMemoryPool的acquireMemory方法,该方法的参数需要两个函数:maybeGrowExecutionPool()和computeMaxExecutionPoolSize()。
每个Task能够使用的内存被限制在pooSize / (2 * numActiveTask) ~ maxPoolSize / numActiveTasks。其中maxPoolSize代表了execution pool的最大内存,poolSize表示当前这个pool的大小。
// ExecutionMemoryPool.scala
val maxPoolSize = computeMaxPoolSize()
val maxMemoryPerTask = maxPoolSize / numActiveTasks
val minMemoryPerTask = poolSize / (2 * numActiveTasks)
maybeGrowExecutionPool()方法实现了如何动态增加Execution内存区的大小。在每次申请execution内存的同时,execution内存池会进行多次尝试,每次尝试都可能会回收一些存储内存。
// UnifiedMemoryManage.scala
def maybeGrowExecutionPool(extraMemoryNeeded: Long): Unit = {
if (extraMemoryNeeded > 0) {//如果申请的内存大于0
//计算execution可借到的storage内存,是storage剩余内存和可借出内存的最大值
val memoryReclaimableFromStorage = math.max(
storagePool.memoryFree,
storagePool.poolSize - storageRegionSize)
if (memoryReclaimableFromStorage > 0) {//如果可以申请到内存
val spaceToReclaim = storagePool.freeSpaceToShrinkPool(
math.min(extraMemoryNeeded, memoryReclaimableFromStorage))//实际需要的内存,取实际需要的内存和storage内存区域全部可用内存大小的最小值
storagePool.decrementPoolSize(spaceToReclaim)//storage内存区域减少
executionPool.incrementPoolSize(spaceToReclaim)//execution内存区域增加
}
}
}