2019年牛客多校第一场B题 Integration 数学

题目链接

传送门

思路

首先我们对 ∫ 0 ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x \int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx 0i=1n(ai2+x2)1dx进行裂项相消:
1 ∏ i = 1 n ( a i 2 + x 2 ) = 1 ( a 1 2 + x 2 ) ( a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 − 1 a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 × 1 a 3 2 + x 2 − 1 a 2 2 + x 2 × 1 a 3 2 + x 2 ) × 1 ∏ i = 4 n ( a i 2 + x 2 ) = … \begin{aligned} &\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{(a_1^2+x^2)(a_2^2+x^2)}\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}-\frac{1}{a_2^2+x^2})\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}\times\frac{1}{a_3^2+x^2}-\frac{1}{a_2^2+x^2}\times\frac{1}{a_3^2+x^2})\times\frac{1}{\prod\limits_{i=4}^{n}(a_i^2+x^2)}&\\ =&\dots& \end{aligned} ====i=1n(ai2+x2)1(a12+x2)(a22+x2)1×i=3n(ai2+x2)1a22a121×(a12+x21a22+x21)×i=3n(ai2+x2)1a22a121×(a12+x21×a32+x21a22+x21×a32+x21)×i=4n(ai2+x2)1
依次裂项相消,然后看系数的规律,可以手动推 n = 2 , 3 n=2,3 n=2,3的系数看规律,也可以计算,比赛的时候我 n = 3 n=3 n=3推到一半队友看到式子和我说这个他学过然后把系数告诉我就 A A A了(队友 t x d y txdy txdy)。
每个 1 a i 2 + x 2 \frac{1}{a_i^2+x^2} ai2+x21的系数为 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) \frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)} j=1,j̸=in(aj2ai2)1,因此最后题目要求的式子久变成了下式:
∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) ∫ 0 ∞ 1 a i 2 + x 2 d x = ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i 2 ∫ 0 ∞ 1 1 + ( x a i ) 2 d x = ∑ i = 1 n 1 ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i ∫ 0 ∞ 1 1 + ( x a i ) 2 d x a i \begin{aligned} &\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)}\int_0^{\infty}\frac{1}{a_i^2+x^2}dx&\\ =&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i^2}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}dx&\\ =&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}d\frac{x}{a_i}& \end{aligned} ==i=1nj=1,j̸=in(aj2ai2)10ai2+x21dxi=1nj=1,j̸=in(aj2ai2)×ai2101+(aix)21dxi=1nj=1,j̸=in(aj2ai2)×ai101+(aix)21daix
积分符号里面的东西就是题目给的式子得到 π 2 \frac{\pi}{2} 2π,因此最后答案为
∑ i = 1 n 1 2 × ∏ j = 1 , j ̸ = i n ( a j 2 − a i 2 ) × a i \begin{aligned} &\sum\limits_{i=1}^{n}\frac{1}{2\times\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i} \end{aligned} i=1n2×j=1,j̸=in(aj2ai2)×ai1

代码实现如下

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;

typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;

#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)

const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;

int n;
int a[maxn], inv[maxn], cnt[maxn];

LL qpow(LL x, int n) {
    LL res = 1;
    while(n) {
        if(n & 1) res = res * x % mod;
        x = x * x % mod;
        n >>= 1;
    }
    return res;
}

int main() {
    int tmp = qpow(2, mod - 2);
    while(~scanf("%d", &n)) {
        for(int i = 1; i <= n; ++i) {
            scanf("%d", &a[i]);
        }
        for(int i = 1; i <= n; ++i) {
            cnt[i] = 1;
            for(int j = 1; j <= n; ++j) {
                if(i == j) continue;
                cnt[i] = 1LL * cnt[i] * ((1LL * a[j] * a[j] % mod - 1LL * a[i]* a[i] % mod) % mod + mod) % mod;
            }
            cnt[i] = qpow(cnt[i], mod - 2);
            cnt[i] = 1LL * cnt[i] * qpow(a[i], mod - 2) % mod;
            cnt[i] = 1LL * cnt[i] * tmp % mod;
        }
        LL ans = 0;
        for(int i = 1; i <= n; ++i) {
            ans = ((ans + cnt[i]) % mod + mod) % mod;
        }
        printf("%lld\n", ans);
    }
    return 0;
}

你可能感兴趣的:(比赛题解)