Spark四种性能调优思路(二)——资源调优

在开发完Spark作业之后,就该为作业配置合适的资源了

文章目录

      • 优化一:资源调优
      • 优化二:Java虚拟机垃圾回收调优
        • 1.检测垃圾回收机制
        • 2.优化executor内存比例

这里有一张Spark工作的原理图,能帮大家更好理解Spark调优的过程

Spark四种性能调优思路(二)——资源调优_第1张图片

优化一:资源调优

Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。

总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行。因此我们必须对Spark作业的资源使用原理有一个清晰的认识,并知道在Spark作业运行过程中,有哪些资源参数是可以设置的,以及如何设置合适的参数值。

所谓资源调优,就是给当前的作业分配足够或者合适的资源,可以在Spark-submit或者SparkConf中进行设置。

内存和cpu/standalone和yarn

参数 含义 默认值 standalone yarn
master 指定当前clustermanager
deploy-mode 作业执行的模式(client和cluster) client
class 要运行的类的全类名
name 当前Application的名称
conf 指定其他相关的配置,举例通过submit脚本开启kryo.–conf spark.serializer=org.apache.spark.serializer.KryoSerializer

资源配置

参数 含义 默认值 standalone yarn
driver-memory driver所需要的内存值 1024M
executor-memory 每一个executor的内存值 1G
driver-cores driver所需的cpu core的个数 1 cluster才有 ×
supervise driver是否受cluster集群的监管,主要作用是:当driver启动失败,可以重新启动 supervise cluster才有 ×
total-executor-cores 总的excutor的cpu的core的个数 ×
excutor-cores 每一个executor的cpu core的个数 yarn是1,standalone是worker上的所有可用的个数
driver-cores driver的cpu core的个数 1 ×
num-exectors executor的个数 2 ×
  • deploy-mode

    • 参数说明:作业执行的模式:client和cluster
    • client:client 模式表示作业的 AM 会放在 Master 节点上运行。要注意的是,如果设置这个参数,那么需要同时指定上面 master 为 yarn。
      • cluster:cluster 模式表示 AM 会随机的在 worker 节点中的任意一台上启动运行。要注意的是,如果设置这个参数,那么需要同时指定上面 master 为yarn。
  • driver-memory

    • 参数说明:该参数用于设置Driver进程的内存。
  • 参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

  • executor-memory

    • 参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
    • 参数调优建议:每个Executor进程的内存设置4G-8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,就代表了你的Spark作业申请到的总内存量(也就是所有Executor进程的内存总和),这个量是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的总内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同事的作业无法运行。
  • executor-cores

    • 参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
    • 参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同事的作业运行。
  • num-executors

    • 参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
    • 参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。
  • 配置建议

    • 如果将内存设置的很大,要注意 GC 所产生的消耗。一般我们会推荐每一个 executor 的内存 <= 64G。
    • 如果是进行 HDFS 读写的作业,建议是每个 executor 中使用 <= 5个并发来读写。
    • 如果是进行 OSS 读写的作业,我们建议是将 executor 分布在不同的 ECS 上,这样可以将每一个 ECS 的带宽都用上。例如,有 10 台 ECS,那么就可以配置 num-executors=10,并设置合理的内存和并发。
    • 如果作业中使用了非线程安全的代码,那么在设置 executor-cores 的时候需要注意多并发是否会造成作业的不正常。如果会,那么推荐就设置 executor-cores=1。

configuration

  • spark.default.parallelism

    • 参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
    • 参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多初学者常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。
  • spark.storage.memoryFraction: executor中进行持久化的内存比例,默认为60%

    • 参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
    • 参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
  • spark.shuffle.memoryFraction: executor中进行shuffle的内存比例,默认为20%。是shuffle操作过程中shuffle read读取到的数据进行内存存放的空间比例。

    • 参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。

    • 参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

提交脚本案例

spark-submit \
      --master yarn \
      --deploy-mode cluster \
      --num-executors 128 \
      --executor-memory 27G \ 
      --executor-cores 8 \
      --driver-memory 8G \  
      --conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
      --conf spark.default.parallelism=1600 \
      --conf spark.storage.memoryFraction=0.5 \
      --conf spark.shuffle.memoryFraction=0.3 \

优化二:Java虚拟机垃圾回收调优

如果在持久化RDD的时候,持久化了大量的数据,那么Java虚拟机的垃圾回收就可能成为一个性能瓶颈。因为Java虚拟机会定期进行垃圾回收,此时就会追踪所有的java对象,并且在垃圾回收时,找到那些已经不在使用的对象,然后清理旧的对象,来给新的对象腾出内存空间

垃圾回收的性能开销,是跟内存中的对象的数量,成正比的。所以,对于垃圾回收的性能问题,首先要做的就是,使用更高效的数据结构,比如array和string;其次就是在持久化rdd时,使用序列化的持久化级别,而且用Kryo序列化类库,这样,每个partition就只是一个对象——一个字节数组。

1.检测垃圾回收机制

  1. 检测垃圾回收机制的工具有很多,比如jstat,首先,GC监控方法根据访问的接口不同,可以分成CUI 和GUI 两大类。CUI GC监控方法使用一个独立的叫做”jstat”的CUI应用,或者在启动JVM的时候选择JVM参数”verbosegc”。

    GUI GC监控由一个单独的图形化应用来完成,其中三个最常用的应用是”jconsole”, “jvisualvm” 和 “Visual GC”。

  2. 在spark-submit脚本中,增加一个配置即可,–conf “spark.executor.extraJavaOptions=-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps”。

    但是要记住,这里虽然会打印出Java虚拟机的垃圾回收的相关信息,但是是输出到了worker上的日志中,而不是driver的日志中。

  3. 我们完全可以通过SparkUI(4040,4041或者4042端口)来观察每个stage的垃圾回收的情况。

2.优化executor内存比例

  1. 对于垃圾回收来说,最重要的就是调节RDD缓存占用的内存空间,与算子执行时创建的对象占用的内存空间的比例。默认情况下,Spark使用每个executor 60%的内存空间来缓存RDD,那么在task执行期间创建的对象,只有40%的内存空间来存放。

    在这种情况下,很有可能因为你的内存空间的不足,task创建的对象过大,那么一旦发现40%的内存空间不够用了,就会触发Java虚拟机的垃圾回收操作。因此在极端情况下,垃圾回收操作可能会被频繁触发。

  2. 在上述情况下,如果发现垃圾回收频繁发生。那么就需要对那个比例进行调优,使用newSparkConf().set(“spark.storage.memoryFraction”, “0.5”)即可,可以将RDD缓存占用空间的比例降低,从而给更多的空间让task创建的对象进行使用。

    因此,对于RDD持久化,完全可以使用Kryo序列化,加上降低其executor内存占比的方式,来减少其内存消耗。给task提供更多的内存,从而避免task的执行频繁触发垃圾回收。

你可能感兴趣的:(Spark,大数据,spark)