HotSpot采用了OOP-Klass模型来描述Java类和对象。OOP(Ordinary Object Pointer)指的是普通对象指针,而Klass用来描述对象的具体类型。
那么为何要设计这样一个一分为二的对象模型呢?因为类和对象本来就不是一个概念,分别使用不同的对象模型描述符合软件开发的设计思想。另外英文注释也说明了其中的一个原因:
One reason for the oop/klass dichotomy in the implementation is that we don't want a C++ vtbl pointer in every object. Thus,
normal oops don't have any virtual functions. Instead, they forward all "virtual" functions to their klass, which does have
a vtbl and does the C++ dispatch depending on the object's actual type. (See oop.inline.hpp for some of the forwarding code.)
根据注释描述,HotSopt的设计者不想让每个对象中都含有一个vtable(虚函数表),所以就把对象模型拆成klass和oop,其中oop中不含有任何虚函数,而klass就含有虚函数表,可以进行方法分发。
我们简单介绍一下C++中对象的内存布局,这样才能了解二分模型设计的原因。同时也要介绍一下关于C++中虚函数的分派,这样在讲解Java语言的多态时就不用再补这一块的C++知识了。
下面分情况介绍C++对象的内存局部。
1、只含有数据成员的对象
class Base1{
public:
int base1_var1;
int base1_var2;
};
通过在VS中配置/d1 reportSingleClassLayoutBase1命令来查看对象的内存布局,如下:
1> class Base1 size(8):
1> +---
1> 0 | base1_var1
1> 4 | base1_var2
1> +---
可以看到,成员变量是按照定义的顺序来保存的,类对象的大小就是所有成员变量的大小之和。
2、没有虚函数的对象
class Base1{
public:
int base1_var1;
int base1_var2;
void func(){}
};
C++中有方法的动态分派,就类似于Java中方法的多态。而C++实现动态分派主要就是通过虚函数来完成的,非虚函数在编译时就已经确定调用目标。C++中的虚函数通过关键字virtual来声明,如上函数func()没有virtual关键字,所以是非虚函数。
查看内存布局,如下:
1> class Base1 size(8):
1> +---
1> 0 | base1_var1
1> 4 | base1_var2
1> +---
非虚函数不会影响内存布局。
3、含有虚函数的对象
class Base1{
public:
int base1_var1;
int base1_var2;
virtual void base1_fun1() {}
};
内存布局如下:
1> class Base1 size(16):
1> +---
1> 0 | {vfptr}
1> 8 | base1_var1
1> 12 | base1_var2
1> +---
在64位环境下,指针占用8字节,而vfptr就是指向虚函数表(vtable)的指针,其类型为void**, 这说明它是一个void*指针。类似于在类Base1中定义了如下类似的伪代码:
void* vtable[1] = { &Base1::base1_fun1 };
const void** vfptr = &vtable[0];
另外我们还可以看到,虚函数指针vfptr位于所有的成员变量之前。
我们在上面的例子中再添加一个虚函数,如下:
virtual void base1_fun2() {}
内存布局如下:
1> class Base1 size(16):
1> +---
1> 0 | {vfptr}
1> 8 | base1_var1
1> 12 | base1_var2
1> +---
可以看到,内存布局无论有一个还是多个虚函数都是一样的,改变的只是vfptr指向的虚函数表中的项。类似于在类Base1中定义了如下类似的伪代码:
void* vtable[] = { &Base1::base1_fun1, &Base1::base1_fun2 };
const void** vfptr = &vtable[0];
4、继承类对象
class Base1{
public:
int base1_var1;
int base1_var2;
virtual void base1_fun1() {}
virtual void base1_fun2() {}
};
class Derive1 : public Base1{
public:
int derive1_var1;
int derive1_var2;
};
通过在VS中配置/d1 reportSingleClassLayoutDerive1命令来查看Derive1对象的内存布局,如下:
1> class Derive1 size(24):
1> +---
1> | +--- (base class Base1)
1> 0 | | {vfptr}
1> 8 | | base1_var1
1> 12 | | base1_var2
1> | +---
1> 16 | derive1_var1
1> 20 | derive1_var2
1> +---
可以看到,基类在上边, 继承类的成员在下边,并且基类的内存布局与之前介绍的一模一样。继续来改造如上的实例,为派生类Derive1添加一个与基本base1_fun1()函数一模一样的虚函数,如下:
class Base1{
public:
int base1_var1;
int base1_var2;
virtual void base1_fun1() {}
virtual void base1_fun2() {}
};
class Derive1 : public Base1{
public:
int derive1_var1;
int derive1_var2;
virtual void base1_fun1() {} // 覆盖基类函数
};
布局如下:
1> class Derive1 size(24):
1> +---
1> | +--- (base class Base1)
1> 0 | | {vfptr}
1> 8 | | base1_var1
1> 12 | | base1_var2
1> | +---
1> 16 | derive1_var1
1> 20 | derive1_var2
1> +---
基本的布局没变,不过由于发生了虚函数覆盖,所以虚函数表中的内容已经发生了变化,类似于在类Derive1中定义了如下类似的伪代码:
void* vtable[] = { &Derive1::base1_fun1, &Base1::base1_fun2 };
const void** vfptr = &vtable[0];
可以看到,vtable[0]指针指向的是Derive1::base1_fun1()函数。所以当调用Derive1对象的base1_fun1()函数时,会根据虚函数表找到Derive1::base1_fun1()函数进行调用,而当调用Base1对象的base1_fun1()函数时,由于Base1对象的虚函数表中的vtable[0]指针指向Base1::base1_func1()函数,所以会调用Base1::base1_fun1()函数。是不是和Java中方法的多态很像?那么HotSpot虚拟机是怎么实现Java方法的多态呢?我们后续在讲解Java方法时会详细介绍。
下面继续看虚函数的相关实例,如下:
class Base1{
public:
int base1_var1;
int base1_var2;
virtual void base1_fun1() {}
virtual void base1_fun2() {}
};
class Derive1 : public Base1{
public:
int derive1_var1;
int derive1_var2;
virtual void derive1_fun1() {}
};
对象的内存布局如下:
1> class Derive1 size(24):
1> +---
1> | +--- (base class Base1)
1> 0 | | {vfptr}
1> 8 | | base1_var1
1> 12 | | base1_var2
1> | +---
1> 16 | derive1_var1
1> 20 | derive1_var2
1> +---
对象的内存布局没有改变,改变的仍然是虚函数表,类似于在类Derive1中定义了如下类似的伪代码:
void* vtable[] = { &Derive1::base1_fun1, &Base1::base1_fun2,&Derive1::derive1_fun1 };
const void** vfptr = &vtable[0];
可以看到,在虚函数表中追加了&Derive1::derive1_fun1()函数。
好了,关于对象的布局我们就简单的介绍到这里,因为毕竟不是在研究C++,只要够我们研究HotSpot时使用就够了,更多关于内存布局的知识请参考其它文章或书籍。
相关文章的链接如下:
Ubuntu16.04上编译OpenJDK8源代码
调试HotSpot源代码
HotSpot项目结构
HotSpot的启动过程
关注个人博客www.classloading.com或公众号,有HotSpot源码剖析系列文章!