卷积神经网络之二:实例及源码示例笔记

文字识别系统LeNet-5


卷积神经网络之二:实例及源码示例笔记_第1张图片

    下面,有必要来解释下上面这个用于文字识别的LeNet-5深层卷积网络。

      1. 输入图像是32x32的大小,局部滑动窗的大小是5x5的,由于不考虑对图像的边界进行拓展,则滑动窗将有28x28个不同的位置,也就是C1层的大小是28x28。这里设定有6个不同的C1层,每一个C1层内的权值是相同的。

 

      2. S2层是一个下采样层。简单的说,由4个点下采样为1个点,也就是4个数的加权平均。但在LeNet-5系统,下采样层比较复杂,因为这4个加权系数也需要学习得到,这显然增加了模型的复杂度。在斯坦福关于深度学习的教程中,这个过程叫做Pool。


源码:Convolutional Neural Networks (LeNet)

可能用到的源码:logistic_sgd,mlp


结果:

...
epoch 180, minibatch 100/100, validation error 0.920000 %
training @ iter =  18000
epoch 181, minibatch 100/100, validation error 0.920000 %
training @ iter =  18100
epoch 182, minibatch 100/100, validation error 0.920000 %
training @ iter =  18200
epoch 183, minibatch 100/100, validation error 0.910000 %
     epoch 183, minibatch 100/100, test error of best model 0.920000 %
training @ iter =  18300
epoch 184, minibatch 100/100, validation error 0.910000 %
training @ iter =  18400
epoch 185, minibatch 100/100, validation error 0.910000 %
training @ iter =  18500
epoch 186, minibatch 100/100, validation error 0.910000 %
training @ iter =  18600
epoch 187, minibatch 100/100, validation error 0.910000 %
training @ iter =  18700
epoch 188, minibatch 100/100, validation error 0.910000 %
training @ iter =  18800
epoch 189, minibatch 100/100, validation error 0.910000 %
training @ iter =  18900
epoch 190, minibatch 100/100, validation error 0.910000 %
training @ iter =  19000
epoch 191, minibatch 100/100, validation error 0.910000 %
training @ iter =  19100
epoch 192, minibatch 100/100, validation error 0.910000 %
training @ iter =  19200
epoch 193, minibatch 100/100, validation error 0.910000 %
training @ iter =  19300
epoch 194, minibatch 100/100, validation error 0.910000 %
training @ iter =  19400
epoch 195, minibatch 100/100, validation error 0.910000 %
training @ iter =  19500
epoch 196, minibatch 100/100, validation error 0.910000 %
training @ iter =  19600
epoch 197, minibatch 100/100, validation error 0.910000 %
training @ iter =  19700
epoch 198, minibatch 100/100, validation error 0.910000 %
training @ iter =  19800
epoch 199, minibatch 100/100, validation error 0.910000 %
training @ iter =  19900
epoch 200, minibatch 100/100, validation error 0.910000 %
Optimization complete.
Best validation score of 0.910000 % obtained at iteration 18300, with test performance 0.920000 %
The code for file convolutional_mlp.py ran for 527.38m



你可能感兴趣的:(机器学习)