数字图像处理 第三章 图像变换

图像变换

图像和其他信号一样,既能在空间域(简称空域)处理,也能在频率域(简称频域)处理。把图像信息从空域变换到频域,可以更好地分析、加工、处理图像信息。因为图像信息的频域处理具有如下特点:①能量守恒,但能量重新分配;②有利于提取图像的某些特征;③正交变换具有能量集中作用,可实现图像的高效压缩编码;④频域有快速算法,可大大减少运算量,提高处理效率。

3.1 图像的几何变换

几何变换是图像变换的基本方法,包括图像的空间平移、比例缩放、旋转、仿射变换、透视变换和图像插值。图像几何变换的实质是改变像素的空间位置或估算新空间位置上的像素值。

3.1.1 图像几何变换的一般表达式

数字图像处理 第三章 图像变换_第1张图片

3.1.2 平移变换

数字图像处理 第三章 图像变换_第2张图片

3.1.3 比例缩放

数字图像处理 第三章 图像变换_第3张图片

3.1.4 旋转变换

3.1.5 仿射变换

数字图像处理 第三章 图像变换_第4张图片

3.1.6 透视变换

数字图像处理 第三章 图像变换_第5张图片

3.1.7 灰度插值

1.最近邻插值法

数字图像处理 第三章 图像变换_第6张图片

2.双线性插值法

数字图像处理 第三章 图像变换_第7张图片

3.卷积插值法

数字图像处理 第三章 图像变换_第8张图片

3.2 图像的离散傅里叶变换

3.2.1 一维离散傅里叶变换(1D-DFT)

1.1D-DFT的定义

数字图像处理 第三章 图像变换_第9张图片

2.1D-DFT的矩阵表示

数字图像处理 第三章 图像变换_第10张图片

3.2.2 二维离散傅里叶变换(2D-DFT)

1.2D-DFT的定义

数字图像处理 第三章 图像变换_第11张图片

2.相关参数

数字图像处理 第三章 图像变换_第12张图片

3.2D-DFT的性质

(1)变换核的可分离性

数字图像处理 第三章 图像变换_第13张图片

(2)移位特性

数字图像处理 第三章 图像变换_第14张图片

数字图像处理 第三章 图像变换_第15张图片

(3)周期性和共轭对称性

数字图像处理 第三章 图像变换_第16张图片

(4)旋转不变性

数字图像处理 第三章 图像变换_第17张图片

(5)实偶函数的DFT

(6)实奇函数的DFT

(7)线性

数字图像处理 第三章 图像变换_第18张图片

(8)比例性(尺度变换)

(9)平均值

数字图像处理 第三章 图像变换_第19张图片

(10)卷积定理

数字图像处理 第三章 图像变换_第20张图片

(11)相关定理

数字图像处理 第三章 图像变换_第21张图片

4.2D-DFT的计算

数字图像处理 第三章 图像变换_第22张图片

3.3 图像变换的一般表示形式

1.图像变换的一般表达式

数字图像处理 第三章 图像变换_第23张图片

2.正交变换

数字图像处理 第三章 图像变换_第24张图片

3.可分离变换

数字图像处理 第三章 图像变换_第25张图片

4.可分离正交变换

数字图像处理 第三章 图像变换_第26张图片

数字图像处理 第三章 图像变换_第27张图片

数字图像处理 第三章 图像变换_第28张图片

3.4 图像的离散余弦变换

由于DFT是复数运算,运算量大,不便于实时处理。但由DFT的性质5可知,当f(m,n)为实的偶函数时,其2D-DFT仅有实部(虚部为0),为实变换。虽然数字图像f(m,n)一般不满足偶函数的条件,但通过f(m,n)的构造,可以变成偶函数,对构造后的实的偶函数的2D-DFT就仅含实部(余弦项),形成的变换就称为离散余弦变换。

1.偶函数的构造

数字图像处理 第三章 图像变换_第29张图片

2.二维离散余弦变换(2D-DFT)公式

数字图像处理 第三章 图像变换_第30张图片

3.2D-DCT的矩阵表示

数字图像处理 第三章 图像变换_第31张图片

3.5 图像的离散沃尔什-哈达玛变换

在前人研究的基础上,美国数学家沃尔什(J.L.沃尔什)于1923年提出了一组在[0,1]上定义的完备、正交的矩形函数系,即沃尔什函数。由于沃尔什函数的完备正交性,可用于正交变换。哈达玛对其进行了改进,又形成了哈达玛变换。沃尔什变换和哈达玛变换统称沃尔什-哈达玛变换。由于它们的变换矩阵只由+1和一1组成,与数值逻辑的两个状态相对应,故更适用于计算机实现,同时占用空间少,且计算简单,在图像的正交变换中得到了广泛的应用。

3.5.1 离散哈达玛变换(DHT)

1.哈达玛变换核

数字图像处理 第三章 图像变换_第32张图片

2.哈达玛变换核特点

数字图像处理 第三章 图像变换_第33张图片

3.5.2 离散沃尔什变换

1.变换核

数字图像处理 第三章 图像变换_第34张图片

2.沃尔什变换核特点

数字图像处理 第三章 图像变换_第35张图片

3.2D-DHT-DWT特点

数字图像处理 第三章 图像变换_第36张图片

3.6 K-L变换

K-L变换首先由Karhunen和Leoeve引人,用来处理随机过程中的连续信号的去相关问题。而Hotelling也提出了一种离散信号的去相关性线性变换,称为“主分量分析法(PCA)”,实际上它是K-L级数展开的离散等效方法。因此,这种变换方法就有多种称谓,如K-L变换、Hotelling变换、特征向量变换或主分量变换等。不同于前面介绍的傅里叶变换、离散余弦变换哈达玛-沃尔什变换,离散K-L变换是以变换矢量的统计性质为基础,在均方误差最小意义下得到的最佳变换,因此常被用来作为衡量其他变换性能的标准。

3.6.1 图像的向量表示和统计参数

数字图像处理 第三章 图像变换_第37张图片

1.图像的向量表示

数字图像处理 第三章 图像变换_第38张图片

2.图像的统计参数

数字图像处理 第三章 图像变换_第39张图片

3.6.2 Cf的特征值和特征向量

1.Cf的特征值

数字图像处理 第三章 图像变换_第40张图片

2.Cf的特征向量

数字图像处理 第三章 图像变换_第41张图片

3.6.3 离散K-L变换及其性质

1.离散K-L变换

数字图像处理 第三章 图像变换_第42张图片

2.离散K-L变换的性质

数字图像处理 第三章 图像变换_第43张图片

3.离散K-L反变换

你可能感兴趣的:(数字图像处理)