orb_slam2外接pc摄像头在windows10、VS2013下实时运行

 

      代码是基于windows10操作系统下VS2013编译器里运行的。

      当初好奇orbslam2可不可以直接外接摄像头实时运行,在网上冲浪许久,并没有找到在windows10上面运行的代码,网上那些外接摄像头的代码几乎都是在Linux系统下运行的。

      在这种情况下,我决定把自己鼓捣出来的能在Windows10系统下运行的代码发出来,Linux系统外接摄像头的我也实现过了,Linux还是方便啊,只要多加几句指令就可以成功。

      在GitHub下载orbslam2源代码到自己的电脑上,其中一系列的配置环境,修改参数之类的操作我就不在这里bb了,相关的帖子一大堆。外接笔记本自带摄像头的操作很简单,将mono_kitti.cpp改成以下代码即可:

简略版



#include 
#include  
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "string.h"

unsigned int g_nPayloadSize = 0;

using namespace std;
using namespace cv;

enum CONVERT_TYPE
{
	OpenCV_Mat = 0,    // Most of the time, we use 'Mat' format to store image data after OpenCV V2.1
};

int main(int argc, char **argv)
{
	if (argc != 4)
	{
		cerr << endl << "Usage: ./path_to_PF_ORB path_to_vocabulary path_to_settings path_to_dev_video" << endl;
		return 1;
	}
	cv::VideoCapture cap(0);
	if (!cap.isOpened())
	{
		cerr << endl << "Could not open camera feed." << endl;
		return -1;
	}

	// Create SLAM system. It initializes all system threads and gets ready to process frames.
	ORB_SLAM2::System SLAM(argv[1], argv[2], ORB_SLAM2::System::MONOCULAR, true);

	cout << endl << "-------" << endl;
	cout << "Start processing sequence ..." << endl;

	// Main loop
	int timeStamps = 0;
	for (;; timeStamps++)
	{
		//Create a new Mat
		cv::Mat frame;

		//Send the captured frame to the new Mat
		cap >> frame;

		// Pass the image to the SLAM system
		SLAM.TrackMonocular(frame, timeStamps);
	}

	// Stop all threads
	SLAM.Shutdown();

	// Save camera trajectory
	SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");
	return 0;
}

结合海康sdk版本 


#pragma comment(lib, "MvCameraControl.lib")

#include 
#include  
#include 
#include 
#include 
#include 
#include 

#include "MvCameraControl.h"
#include 
#include 
#include 
#include 
#include 
#include 
#include "string.h"


unsigned int g_nPayloadSize = 0;

using namespace std;

enum CONVERT_TYPE
{
	OpenCV_Mat = 0,    // Most of the time, we use 'Mat' format to store image data after OpenCV V2.1
};

// print the discovered devices information to user 将发现的设备信息打印给用户
bool PrintDeviceInfo(MV_CC_DEVICE_INFO* pstMVDevInfo)
{
	if (NULL == pstMVDevInfo)
	{
		printf("The Pointer of pstMVDevInfo is NULL!\n");
		return false;
	}
	if (pstMVDevInfo->nTLayerType == MV_USB_DEVICE)
	{
		printf("UserDefinedName: %s\n", pstMVDevInfo->SpecialInfo.stUsb3VInfo.chUserDefinedName);
		printf("Serial Number: %s\n", pstMVDevInfo->SpecialInfo.stUsb3VInfo.chSerialNumber);
		printf("Device Number: %d\n\n", pstMVDevInfo->SpecialInfo.stUsb3VInfo.nDeviceNumber);
	}
	else
		printf("Not support.\n");

	return true;
}

int RGB2BGR(unsigned char* pRgbData, unsigned int nWidth, unsigned int nHeight)
{
	if (NULL == pRgbData)
	{
		return MV_E_PARAMETER;
	}

	for (unsigned int j = 0; j < nHeight; j++)
	{
		for (unsigned int i = 0; i < nWidth; i++)
		{
			unsigned char red = pRgbData[j * (nWidth * 3) + i * 3];
			pRgbData[j * (nWidth * 3) + i * 3] = pRgbData[j * (nWidth * 3) + i * 3 + 2];
			pRgbData[j * (nWidth * 3) + i * 3 + 2] = red;
		}
	}

	return MV_OK;
}

// convert data stream in Mat format 以Mat格式转换数据流
bool Convert2Mat(MV_FRAME_OUT_INFO_EX* pstImageInfo, unsigned char * pData)
{
	cv::Mat srcImage;
	if (pstImageInfo->enPixelType == PixelType_Gvsp_Mono8)
	{
		srcImage = cv::Mat(pstImageInfo->nHeight, pstImageInfo->nWidth, CV_8UC1, pData);
	}
	else if (pstImageInfo->enPixelType == PixelType_Gvsp_RGB8_Packed)
	{
		RGB2BGR(pData, pstImageInfo->nWidth, pstImageInfo->nHeight);
		srcImage = cv::Mat(pstImageInfo->nHeight, pstImageInfo->nWidth, CV_8UC3, pData);
	}
	else
	{
		printf("unsupported pixel format\n");
		return false;
	}

	if (NULL == srcImage.data)
	{
		return false;
	}

	//save converted image in a local file 保存

	//	try {
	//#if defined (VC9_COMPILE)
	//		cvSaveImage("MatImage.jpg", &(IplImage(srcImage)));
	//#else
	//		cv::imwrite("MatImage.jpg", srcImage);
	//#endif
	//	}
	//	catch (cv::Exception& ex) {
	//		fprintf(stderr, "Exception saving image to bmp format: %s\n", ex.what());
	//	}

	srcImage.release();

	return true;
}

int main(int argc, char **argv)
{
	if (argc != 4)
	{
		cerr << endl << "Usage: ./path_to_PF_ORB path_to_vocabulary path_to_settings path_to_dev_video" << endl;
		return 1;
	}
	cv::VideoCapture cap(0);
	if (!cap.isOpened())
	{
		cerr << endl << "Could not open camera feed." << endl;
		return -1;
	}

	// Create SLAM system. It initializes all system threads and gets ready to process frames.
	ORB_SLAM2::System SLAM(argv[1], argv[2], ORB_SLAM2::System::MONOCULAR, true);

	cout << endl << "-------" << endl;
	cout << "Start processing sequence ..." << endl;

	// Main loop
	int timeStamps = 0;
	for (;; timeStamps++)
	{
		//Create a new Mat
		cv::Mat frame;

		//Send the captured frame to the new Mat
		cap >> frame;

		// Pass the image to the SLAM system
		SLAM.TrackMonocular(frame, timeStamps);
	}

	// Stop all threads
	SLAM.Shutdown();

	// Save camera trajectory
	SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");
	return 0;
}

你可能感兴趣的:(程序人生,图像处理)