ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能

ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能

导读
通过利用13种机器学习算法,分别是LiR、kNN、SVR、DTR、RFR、SGDR、GBR、LGBR、XGBR算法,然后对Boston(波士顿房价)数据集,形状是【13+1,506】,进行回归预测(房价预测)来比较各模型性能,发现LGBR模型的性能最好。

 

相关文章
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能

 

 

 

目录

输出结果

设计思路


 

 

输出结果

ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第1张图片ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第2张图片
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第3张图片ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第4张图片ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第5张图片ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第6张图片

新增第13种ML算法

ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第7张图片ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第8张图片

 

数据的初步查验:输出回归目标值的差异
The max target value is 50.0
The min target value is 5.0
The average target value is 22.532806324110677


LiR:The value of default measurement of LiR is 0.6763403830998702
LiR:R-squared value of DecisionTreeRegressor: 0.6763403830998702
LiR:The mean squared error of DecisionTreeRegressor: 25.096985692067726
LiR:The mean absoluate error of DecisionTreeRegressor: 3.5261239963985433


kNNR_uni:The value of default measurement of kNNR_uni is 0.6903454564606561
kNNR_uni:R-squared value of DecisionTreeRegressor: 0.6903454564606561
kNNR_uni:The mean squared error of DecisionTreeRegressor: 24.01101417322835
kNNR_uni:The mean absoluate error of DecisionTreeRegressor: 2.9680314960629928
kNNR_dis:The value of default measurement of kNNR_dis is 0.7197589970156353
kNNR_dis:R-squared value of DecisionTreeRegressor: 0.7197589970156353
kNNR_dis:The mean squared error of DecisionTreeRegressor: 21.730250160926044
kNNR_dis:The mean absoluate error of DecisionTreeRegressor: 2.8050568785108005


linear_SVR:The value of default measurement of linear_SVR is 0.651717097429608
linear_SVR:R-squared value of DecisionTreeRegressor: 0.651717097429608
linear_SVR:The mean squared error of DecisionTreeRegressor: 27.0063071393243
linear_SVR:The mean absoluate error of DecisionTreeRegressor: 3.426672916872753
poly_SVR:The value of default measurement of poly_SVR is 0.40445405800289286
poly_SVR:R-squared value of DecisionTreeRegressor: 0.4044540580028929
poly_SVR:The mean squared error of DecisionTreeRegressor: 46.1794033139523
poly_SVR:The mean absoluate error of DecisionTreeRegressor: 3.75205926674149
rbf_SVR:The value of default measurement of rbf_SVR is 0.7564068912273935
rbf_SVR:R-squared value of DecisionTreeRegressor: 0.7564068912273935
rbf_SVR:The mean squared error of DecisionTreeRegressor: 18.888525000753493
rbf_SVR:The mean absoluate error of DecisionTreeRegressor: 2.6075632979823276


DTR:The value of default measurement of DTR is 0.699313885811367
DTR:R-squared value of DecisionTreeRegressor: 0.699313885811367
DTR:The mean squared error of DecisionTreeRegressor: 23.31559055118111
DTR:The mean absoluate error of DecisionTreeRegressor: 3.1716535433070865


RFR:The value of default measurement of RFR is 0.8320900865862684
RFR:R-squared value of DecisionTreeRegressor: 0.8320900865862684
RFR:The mean squared error of DecisionTreeRegressor: 13.019952055992995
RFR:The mean absoluate error of DecisionTreeRegressor: 2.3392650918635174


ETR:The value of default measurement of ETR is 0.7595247600325825
ETR:R-squared value of DecisionTreeRegressor: 0.7595247600325824
ETR:The mean squared error of DecisionTreeRegressor: 18.646761417322832
ETR:The mean absoluate error of DecisionTreeRegressor: 2.5487401574803146


SGDR:The value of default measurement of SGDR is 0.6525677025033261
SGDR:R-squared value of DecisionTreeRegressor: 0.6525677025033261
SGDR:The mean squared error of DecisionTreeRegressor: 26.940350120746693
SGDR:The mean absoluate error of DecisionTreeRegressor: 3.524049659554681
GBR:The value of default measurement of GBR is 0.8442966156976921
GBR:R-squared value of DecisionTreeRegressor: 0.8442966156976921
GBR:The mean squared error of DecisionTreeRegressor: 12.07344198657727
GBR:The mean absoluate error of DecisionTreeRegressor: 2.2692783233003326


[LightGBM] [Warning] feature_fraction is set=0.6, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.6
[LightGBM] [Warning] min_data_in_leaf is set=18, min_child_samples=20 will be ignored. Current value: min_data_in_leaf=18
[LightGBM] [Warning] min_sum_hessian_in_leaf is set=0.001, min_child_weight=0.001 will be ignored. Current value: min_sum_hessian_in_leaf=0.001
[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7
LGBR:The value of default measurement of LGBR is 0.824979251097139
LGBR:R-squared value of DecisionTreeRegressor: 0.824979251097139
LGBR:The mean squared error of DecisionTreeRegressor: 13.5713354452417
LGBR:The mean absoluate error of DecisionTreeRegressor: 2.3653297699911455
[0.6763403830998702, 0.6903454564606561, 0.7197589970156353, 0.651717097429608, 0.40445405800289286, 0.7564068912273935, 0.699313885811367, 0.8320900865862684, 0.7595247600325825, 0.6525677025033261, 0.8442966156976921, 0.824979251097139]


{'learning_rate': 0.09, 'max_depth': 4, 'n_estimators': 200}
rmse: 0.37116076328428194
XGBR_grid:The value of default measurement of XGBR_grid is -0.1355992935386311
XGBR_grid:R-squared value of DecisionTreeRegressor: 0.8494067182200448
XGBR_grid:The mean squared error of DecisionTreeRegressor: 11.67719810423491
XGBR_grid:The mean absoluate error of DecisionTreeRegressor: 2.156086404304805

 

设计思路

ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第9张图片

ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能_第10张图片

 

你可能感兴趣的:(ML,DataScience)