- 尚硅谷电商数仓6.0,hive on spark,spark启动不了
新时代赚钱战士
hivesparkhadoop
在datagrip执行分区插入语句时报错[42000][40000]Errorwhilecompilingstatement:FAILED:SemanticExceptionFailedtogetasparksession:org.apache.hadoop.hive.ql.metadata.HiveException:FailedtocreateSparkclientforSparksessio
- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- 【后端】【django】Django 自带的用户系统与 RBAC 机制
患得患失949
django知识数据库sqlitedjango
Django自带的用户系统与RBAC机制Django自带的用户系统(django.contrib.auth)提供了身份验证(Authentication)和权限管理(Authorization),能够快速实现用户管理、权限控制、管理员后台等功能,同时具备RBAC(基于角色的访问控制,Role-BasedAccessControl)的基本实现。本文将详细介绍Django用户系统的功能、管理员账号创建
- 一文搞懂大数据神器Spark,真的太牛了!
qq_23519469
大数据spark分布式
Spark是什么在如今这个大数据时代,数据量呈爆炸式增长,传统的数据处理方式已经难以满足需求。就拿电商平台来说,每天产生的交易数据、用户浏览数据、评论数据等,数量巨大且种类繁多。假如要对这些数据进行分析,比如分析用户的购买行为,找出最受欢迎的商品,预测未来的销售趋势等,用普通的单机处理方式,可能需要花费很长时间,甚至根本无法完成。这时,Spark就应运而生了。Spark是一个开源的、基于内存计算的
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- 元戎启行最新战略RoadAGI:所有移动智能体都将被AI驱动
量子位
2025年3月18日(北京时间),元戎启行作为国内人工智能企业代表,出席由NVIDIA主办的GTC大会。会上,公司CEO周光发表了技术主题演讲,展示了公司的最新战略布局RoadAGI,并发布道路通用人工智能平台——AISpark(以下简称”Spark平台”)。RoadAGI是元戎启行实现物理世界通用人工智能的关键一步,旨在让包括智能驾驶汽车在内的移动智能体,都具有在道路上自主行驶、与物理世界深度交
- SparkSQL编程-RDD、DataFrame、DataSet
早拾碗吧
Sparksparkhadoop大数据sparksql
三者之间的关系在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:RDD(Spark1.0)—>Dataframe(Spark1.3)—>Dataset(Spark1.6)如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的Spark版本中
- How Spark Read Sftp Files from Hadoop SFTP FileSystem
IT•轩辕
CloudyComputationsparkhadoop大数据
GradleDependenciesimplementation('org.apache.spark:spark-sql_2.13:3.5.3'){excludegroup:"org.apache.logging.log4j",module:"log4j-slf4j2-impl"}implementation('org.apache.hadoop:hadoop-common:3.3.4'){exc
- pyspark 遇到**Py4JJavaError** Traceback (most recent call last) ~\AppData\
2pi
sparkpython
Py4JJavaErrorTraceback(mostrecentcalllast)~\AppData\Local\Temp/ipykernel_22732/1401292359.pyin---->1feat_df.show(5,vertical=True)D:\Anaconda3\envs\recall-service-cp4\lib\site-packages\pyspark\sql\data
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- 深入GPU渲染流水管线:从顶点到像素的微观世界
晴空了无痕
图形学GPU渲染管线
现代图形硬件的架构解密与优化实践一、渲染流水线全景解析1.经典渲染管线阶段划分应用阶段几何阶段光栅化阶段像素处理阶段输出合并阶段2.现代GPU架构演进SIMT架构特性:NVIDIASM(StreamingMultiprocessor)vsAMDCU(ComputeUnit)硬件管线并行度:顶点着色器:32线程/Warp像素着色器:8x8像素/Quad延迟渲染革命:Tile-BasedDeferre
- Spark集群启动与关闭
陈沐
sparksparkhadoopbigdata
Hadoop集群和Spark的启动与关闭Hadoop集群开启三台虚拟机均启动ZookeeperzkServer.shstartMaster1上面执行启动HDFSstart-dfs.shslave1上面执行开启YARNstart-yarn.shslave2上面执行开启YARN的资源管理器yarn-daemon.shstartresourcemanager(如果nodeManager没有启动(正常情况
- Spark 解析_spark.sparkContext.getConf().getAll()
闯闯桑
spark大数据分布式
spark.sparkContext.getConf().getAll()是ApacheSpark中的一段代码,用于获取当前Spark应用程序的所有配置项及其值。以下是逐部分解释:代码分解:spark:这是一个SparkSession对象,它是Spark应用程序的入口点,用于与Spark集群进行交互。spark.sparkContext:sparkContext是Spark的核心组件,负责与集群通
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- STL——排序算法(merge、sort、random_shuffle、reverse)
Soaring丶
STL排序算法c++算法
#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#includeusingnamespacestd;//merge算法容器元素合并,并存储到另一容器中voidtest01(){vectorv1;vectorv2;for(inti=5;i>=0;i--){v1.push_back(i+1);v2.push_b
- C++ STL(十四):常用排序算法(sort、random_shuffle、merge、reverse)
NewsomTech
C++泛型编程和STL排序算法sortrandom_shufflemergereverse
文章目录0常用排序算法简介【sort、random_shuffle、merge、reverse】1sort【对容器元素排序】2random_shuffle【洗牌:对指定范围的容器元素随机排序】3merge【合并两个容器的元素,并存储至新容器中】4reverse【反转容器元素】0常用排序算法简介【sort、random_shuffle、merge、reverse】算法简介:sort:对容器元素排序。
- c++STL常用算法之排序算法——全面总结(附案例解析)(二十四)
磊磊cpp
C/C++STL详细教学C++STL
这里有C++STL——全面总结详细教程(附案例解析)(持续更新中)常用排序算法学习目标:掌握常用的排序算法算法简介:sort//对容器内元素进行排序random_shuffle//洗牌指定范围内的元素随机调整次序merge//容器元素合并,并存储到另一容器中reverse//反转指定范围的元素sort功能描述:对容器内元素进行排序函数原型:sort(iteratorbeg,iteratorend,
- 自定义Spark启动的metastore_db和derby.log生成路径
节昊文
spark大数据分布式
1.进入安装spark目录的conf目录下2.复制spark-defaults.conf.template文件为spark-defaults.conf3.在spark-defaults.conf文件的末尾添加一行:spark.driver.extraJavaOptions-Dderby.system.home=/log即生成的文件存放的目录
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
Echo_Wish
大数据大数据hadoopspark
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路说起大数据技术,Hadoop和Spark可以说是这个领域的两座里程碑。Hadoop曾是大数据的开山之作,而Spark则带领我们迈入了一个高效、灵活的大数据处理新时代。那么,它们的演变过程到底有何深意?背后技术上的取舍和选择,又意味着什么?一、Hadoop:分布式存储与计算的奠基者Hadoop诞生于互联网流量爆发式增长的时代,
- KVM 内核优化全攻略:全方位释放服务器性能
TechStack 创行者
KVMLinux服务器运维KVM
KVM内核优化全攻略:全方位释放服务器性能在云计算、大数据、人工智能等前沿技术蓬勃发展的当下,服务器性能面临着前所未有的挑战。KVM(Kernel-basedVirtualMachine)作为开源虚拟化解决方案,凭借高效稳定的特性,广泛应用于企业数据中心。要充分发挥KVM性能优势,对其内核进行全面优化势在必行。本文将为你详细介绍一套涵盖通用优化及其他关键优化点的完整KVM内核优化方案,并结合实际案
- Hive 与 SparkSQL 的语法差异及性能对比
自然术算
Hivehivehadoop大数据spark
在大数据处理领域,Hive和SparkSQL都是极为重要的工具,它们为大规模数据的存储、查询和分析提供了高效的解决方案。虽然二者都致力于处理结构化数据,并且都采用了类似SQL的语法来方便用户进行操作,但在实际使用中,它们在语法细节和性能表现上存在诸多差异。了解这些差异,对于开发者根据具体业务场景选择合适的工具至关重要。语法差异数据定义语言(DDL)表创建语法Hive:在Hive中创建表时,需要详细
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- Spark任务读取hive表数据导入es
小小小小小小小小小小码农
hiveelasticsearchsparkjava
使用elasticsearch-hadoop将hive表数据导入es,超级简单1.引入pomorg.elasticsearchelasticsearch-hadoop9.0.0-SNAPSHOT2.创建sparkconf//spark参数设置SparkConfsparkConf=newSparkConf();//要写入的索引sparkConf.set("es.resource","");//es集
- Spark sql 中row的用法
闯闯桑
sparksql大数据开发语言
在ApacheSpark中,Row是一个表示一行数据的类。它是SparkSQL中DataFrame或Dataset的基本数据单元。每一行数据都由一个Row对象表示,而Row对象中的每个字段对应数据的一个列。Row的用法Row对象通常用于以下场景:创建数据:当你手动创建数据时,可以使用Row对象来表示每一行数据。访问数据:当你从DataFrame或Dataset中提取数据时,每一行数据都是一个Row
- Spark Sql 简单校验的实现
小小小小小小小小小小码农
sparksqljava
在网上参考了很多资料,都是要依赖Sparksession,这个需要spark环境,非常不友好,jdk版本也不好控制。不使用Sparksession获取上下文,利用spark和antlr的静态方法使用java实现简单的sparksql的语法以及内置函数的校验。1.spark版本3.2.0org.apache.sparkspark-sql_2.123.2.0org.antlrantlr4-runtim
- PySpark安装及WordCount实现(基于Ubuntu)
uui1885478445
ubuntulinux运维
在Ubuntu上安装PySpark并实现WordCount,需要以下步骤:安装PySpark:安装Java:PySpark需要Java运行环境。你可以使用以下命令安装OpenJDK:sudoaptupdatesudoaptinstalldefault-jredefault-jdk安装Scala:PySpark还需要Scala,可以使用以下命令安装:sudoaptinstallscala安装Pyth
- MIE 1622H Risk-Based and Robust
后端
MIE1622H:Assignment2–Risk-BasedandRobustPortfolioSelectionStrategiesDr.OleksandrRomanko,MohammadrezaMohammadiFebruary10,2025Due:Friday,March7,2025,notlaterthan11:59p.m.UsePythonforallMIE1622Hassignmen
- 大数据手册(Spark)--Spark安装配置
WilenWu
数据分析(DataAnalysis)大数据spark分布式
本文默认在zsh终端安装配置,若使用bash终端,环境变量的配置文件相应变化。若安装包下载缓慢,可复制链接到迅雷下载,亲测极速~准备工作Spark的安装过程较为简单,在已安装好Hadoop的前提下,经过简单配置即可使用。假设已经安装好了hadoop(伪分布式)和hive,环境变量如下JAVA_HOME=/usr/opt/jdkHADOOP_HOME=/usr/local/hadoopHIVE_HO
- 国内外AI搜索产品盘点
Suee2020
人工智能
序号AISearch产品名简介网站开发者1Perplexity强大的对话式AI搜索引擎https://www.perplexity.aiPerplexity2GensparkAIAgent搜索引擎https://www.genspark.aiMainFunc(景鲲、朱凯华)3Kimi.ai智能助手https://kimi.moonshot.cn/月之暗面(杨植麟)4秘塔AI搜索AI搜索引擎http
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo