- 第六篇:数字逻辑的“矩阵革命”——域控制器中的组合电路设计
天天爱吃肉8218
学习笔记矩阵线性代数汽车笔记
副标题:用卡诺图破解车身域控制器的逻辑迷宫,揭秘华为DriveONE的“数字特工”▍开篇:黑客帝国世界观映射>"WelcometotheRealWorld."——Morpheus>在数字逻辑的世界里,组合电路就是构建Matrix的底层代码。当新能源汽车的域控制器需要同时处理车门锁、灯光控制、热管理信号时,就像Neo同时躲避多个特工的追击——只有最优化的逻辑设计,才能让系统在纳秒级响应中游刃有余。核
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 【算法】动态规划专题⑪ —— 区间DP python
查理零世
动态规划专题算法动态规划python
目录引入进入正题回归经典总结引入区间动态规划(区间DP)适用于解决涉及区间最优化的经典问题,如石子合并、最长回文子序列等。进入正题石子合并https://www.acwing.com/problem/content/284/有N堆石子排成一排,其编号为1,2,3,…,N。每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。每次只能合并相邻的两堆,合并的代价为这两堆石子的质量
- 拉格朗日乘数法算法详解及python实现
闲人编程
python算法python开发语言拉格朗日乘数法数学模型
目录一、拉格朗日乘数法算法详解1.1基本思想1.2数学推导1.3算法步骤1.4算法在编程中的实现二、案例分析案例一:二维最优化问题——求f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2在约束x+y=1x+y=1x+y=1下的极值2.1.1问题描述2.1.2数学模型构建2.1.3Python代码实现案例二:乘积最大化问题——求f(x,y)=xyf(x,y)=xyf(x,y
- Yocto Project的后坐力与未来可能性分析
嵌入式Jerry
Yocto嵌入式硬件linux架构学习职场和发展经验分享面试
一、YoctoProject概述YoctoProject(简称Yocto)是一款基于OpenEmbedded开发环境的开源项目,致力于为嵌入式系统提供高自定义性的Linux发行模型。通过自定义属于自己的BSP层,开发者可以根据需要构建特定硬件环境下最优化的Linux分发版。Yocto目前已被应用于各大嵌入式行业,包括通信、应用端、自动化设备、智能系统等多种领域。目前,它的发展流向深刻影响着未来的嵌
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 《从入门到精通:蓝桥杯编程大赛知识点全攻略》(八)-摘花生、地宫取宝
程序猿零零漆
蓝桥杯蓝桥杯算法java
前言在许多算法问题中,动态规划是一种非常有效的技巧,能够在处理最优化问题时提供显著的性能提升。通过将问题拆解成更小的子问题,并利用已解决的子问题来构建最终解,动态规划能够显著减少计算量。在本文中,我们将通过具体的应用案例,探讨如何使用动态规划来解决“摘花生”和“地宫取宝”这两个经典问题。摘花生HelloKitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进
- Python-玩转数据-凸优化
人猿宇宙
python数据挖掘人工智能
一、说明最优化问题目前在机器学习,数据挖掘等领域应用非常广泛,因为机器学习简单来说,主要做的就是优化问题,先初始化一下权重参数,然后利用优化方法来优化这个权重,直到准确率不再是上升,迭代停止,那到底什么是最优化问题呢?比如你要从上海去北京,你可以选择搭飞机,或者火车,动车,但只给你500块钱,要求你以最快的时间到达,其中到达的时间就是优化的目标,500块钱是限制条件,选择动车,火车,或者什么火车都
- 拉格朗日乘数法算法详解Python实现
闲人编程
python算法python开发语言偏导拉格朗日乘数法数学模型
目录一、拉格朗日乘数法算法详解1.1基本思想1.2数学推导1.3算法步骤1.4算法在编程中的实现二、案例分析案例一:二维最优化问题——求f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2在约束x+y=1x+y=1x+y=1下的极值2.1.1问题描述2.1.2数学模型构建2.1.3算法流程图(Mermaid语法)2.1.4Python代码实现案例二:乘积最大化问题——求f(
- DynamicPlanning动态规划学习笔记
kxwsspz2001
笔记动态规划算法
动态规划动态规划的特点是求解决策过程最优化的过程。适用于求解将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。各阶段决策依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列。我们可以从决策序列中找到最优解LeetCode53给定一个整数数组nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。示例
- 国科大-算法中的最优化方法-林
手板心里煎鱼吃
算法性能优化matlab
2024国科大-算法中的最优化方法-林刚考完,把复习资料也发出来,学弟学妹可以参考学习一下。总的来说不是很难,由于开卷转闭卷的原因,大部分都是原题,在ppt以及网上都能找到。考过内容汇总:A前面是几个填空题,主要考察凸函数,拟凸函数,单峰函数这些的图像判断,以及通过等高线图找到梯度方向(第一个ppt上的最后一页的那个图)。填空题主要就是考察这些基本概念。第二大题给了4个题目,让判断是属于哪种规划(
- 大模型部署工具 llama.cpp 介绍与安装使用
大模型柳儿
llama服务器人工智能web安全linux安全
1.大模型部署工具llama.cpp大模型的研究分为训练和推理两个部分。训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化,推理结果最优化的过程。训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp(https://github.com/ggerganov/llama.cpp)主要解决的是推理过程中的性能问题。主要有两点优化:llama.cp
- python在统计专业的应用_Python在计量经济与统计学中的应用
weixin_39851457
python在统计专业的应用
PythonforEconometricsandStatistics(Python在计量经济与统计学中的应用)【点击链接进入主页】。这套笔记将重点介绍Python在计量经济学与统计分析中的应用。内容涵盖Python基本数据类型,Numpy科学运算,Pandas数据分析,统计分析,蒙特卡洛过程,最优化过程,数据可视化功能,以及在计量经济与统计模型中的应用等。随后还将陆续推出统计学习在在量化金融中的应
- 基于STM32的智能温室自动控制系统设计
STM32发烧友
stm32嵌入式硬件单片机
目录引言硬件与软件设计硬件设计软件设计系统架构功能模块系统流程代码实现4.1温湿度监测模块4.2土壤湿度监测模块4.3自动灌溉控制模块4.4显示与报警模块系统调试与优化结论与未来工作1.引言随着农业自动化和精准农业的发展,温室环境控制系统在现代农业中扮演着越来越重要的角色。温室自动控制系统通过监控温度、湿度、土壤湿度等关键参数,实现自动化控制,调节环境以最优化作物生长条件。本文设计了一个基于STM
- 数据结构与算法再探(五)贪心-双指针-滑动窗口
刀客123
数据结构与算法算法
贪心算法贪心算法是一种常用的算法设计策略,旨在通过局部最优选择来构建全局最优解。它的基本思想是:在每一步选择中,都选择当前看起来最优的选项,而不考虑后续的影响。贪心算法通常用于解决最优化问题,尤其是在某些特定条件下能够得到全局最优解的问题1、分发饼干455.分发饼干-力扣(LeetCode)假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子i,都有一个
- llama.cpp部署
法号:行颠
机器学习机器学习
llama.cpp介绍部署介绍大模型的研究分为训练和推理两个部分:训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化;推理结果最优化的过程;训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp主要解决的是推理过程中的性能问题。主要有两点优化:llama.cpp使用的是C语言写的机器学习张量库ggmlllama.cpp提供了模型量化的工具计算类
- 简单优化模型实例(1)
补三补四
数学建模#LINGO算法数学建模
lingo实例简单线性规划简单线性规划是数学中线性规划的一种简化形式,主要用于解决具有两个决策变量的线性目标函数在一组线性约束条件下的最优化问题。目标函数:是一个关于决策变量的线性函数,通常表示z=ax+by的形式,其中a和b是常数。目标函数需要在约束条件下达到最大值或最小值。约束条件:是一组关于决策变量的线性不等式或等式。这些约束条件限制了决策变量的取值范围,使得问题的解在一定的可行域内。例如x
- 《流浪地球》:当太阳将要死去,让我们带着地球去流浪
逝去的往昔
春节假期,看了两场电影,今天的《流浪地球》看得震撼至极。影片改编于刘慈欣的同名小说,观影之前特意在微信读书上阅读完了那个短篇。图片发自App我对科幻其实是无感的。拗不过孩子们的期盼,还是跟他们一起去了影院。看完之后才知道自己是多么浅薄。电影的效果跟书籍是无法相比的。看完书已经折服于大刘的想象力了,看完电影更加感叹导演的尽心竭力,正如预告片中所言,郭帆与他的队友在四年的时间里,将影片做到了最优化。试
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- 动态规划算法:
我不会JAVA!
算法动态规划
动态规划算法简介动态规划(DynamicProgramming,DP)是一种将复杂问题分解为更简单的子问题来求解的算法思想。它通过保存中间子问题的解,避免了重复计算,从而大大提高了解决问题的效率。动态规划通常用于求解最优化问题,比如最短路径、最大收益等。动态规划解题步骤确定状态:明确在问题的某一步中,需要存储什么信息来描述子问题的解。状态转移方程:找出如何通过前一步的状态来得到当前状态,即如何递推
- 最高效的学习方法
君子务本2022
在信息爆炸的时代,我们需要面对的挑战与日俱增,学习是我们提升能力,增加代偿的必由之路!可是时间和注意力这些稀缺资源注定越来越稀缺,我们怎么在有限的时间内取得最好学习效果是我们今天每一个人都必须解决的问题。万维钢的《精英日课》分享了一个实现学习效率最优化的比例,今天读来受益匪浅。写此笔记作为的开篇之作,向万维钢老师致谢,向亚利桑那大学和布朗大学的研究者致敬!三个知识点:学习区、心流、喜欢公式1、学习
- 提醒一下技术人,你是不是陷入局部最优了
ngu2008
首先看一张函数图像:函数图像很明显,这个函数最小值点在E点,而A、C、G是函数的局部极小值点。我读书期间学的数学专业,研究的方向就是最优化算法,说的直白点,就是找函数的最小值点,如果得找到了E点就说明成功了,可是如果只找到了A、C、G中的一个就停滞,这时算法就陷入局部最优了,这个时候就需要修改算法,需要加入一些扰动或者其他策略,避免函数陷入局部最优解,所以最优化算法有一个非常重要的点就是要避免算法
- 没有免费的午餐定理
做程序员的第一天
机器学习人工智能机器学习
没有免费午餐定理(NoFreeLunchTheorem,NFL)是由Wolpert和Macerday在最优化理论中提出的.没有免费午餐定理证明:对于基于迭代的最优化算法,不存在某种算法对所有问题(有限的搜索空间内)都有效.如果一个算法对某些问题有效,那么它一定在另外一些问题上比纯随机搜索算法更差.也就是说,不能脱离具体问题来谈论算法的优劣,任何算法都有局限性.必须要“具体问题具体分析”.没有免费午
- LED恒流驱动芯片方案合集-主要应用于热门行业智能家居调光、RGB五路摄影灯补光灯、12V升压汽车车灯、调光电源模块、大功率舞台灯、太阳能灯带、应急灯、显示器背光等LED恒流驱动方案
远翔调光芯片^13828798872
智能家居汽车计算机外设能源科技
深圳市雅欣控制技术有限公司,在芯片行业深耕二十载。是Feeling和MST在深圳的一级代理商。致力于推广销售电源管理芯片、LED驱动芯片和霍尔开关系列产品,为您提供最优化的解决方案、最优质的产品及咨询服务。远翔各型号应用分类:降压芯片:FP6161,FP6188,FP6150B,FP6151。升压芯片:FP5139,FP5207,FP5217,FP6291,FP6293,FP6296,FP6298
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST