- flink实时集成利器 - apache seatunnel - 核心架构详解
24k小善
flinkapache架构
SeaTunnel(原名Waterdrop)是一个分布式、高性能、易扩展的数据集成平台,专注于大数据领域的数据同步、数据迁移和数据转换。它支持多种数据源和数据目标,并可以与ApacheFlink、Spark等计算引擎集成。以下是SeaTunnel的核心架构详解:SeaTunnel核心架构SeaTunnel的架构设计分为以下几个核心模块:1.数据源(Source)功能:负责从外部系统读取数据。支持的
- DS缩写乱争:当小海豚撞上AI顶流,技术圈也逃不过“撞名”修罗场
数据库
DS缩写风云:从“小海豚”到“深度求索”的魔幻现实曾几何时,技术圈提到DS,人们脑海中浮现的是一只灵动的“小海豚”——ApacheDolphinScheduler(简称DS)。这个2019年诞生的分布式任务调度系统,凭借可视化DAG界面、多租户支持和对Hadoop/Spark生态的深度集成,一度是大数据工程师的“梦中情工”。然而,命运的齿轮在2025年初突然加速转动:杭州AI公司DeepSeek(
- 如何在Java中实现高效的分布式计算框架:从Hadoop到Spark
省赚客app开发者
javahadoopspark
如何在Java中实现高效的分布式计算框架:从Hadoop到Spark大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式计算框架,重点介绍Hadoop和Spark这两个在大数据处理领域中广泛使用的技术。一、Hadoop:基础分布式计算框架Hadoop是一个开源的分布式计算框架,最早由Apache开发,旨在处理海量数据。它的核心
- Spark源码分析
数据年轮
Sparkspark源码spark大数据源码分析
过程描述:1.通过Shell脚本启动Master,Master类继承Actor类,通过ActorySystem创建并启动。2.通过Shell脚本启动Worker,Worker类继承Actor类,通过ActorySystem创建并启动。3.Worker通过Akka或者Netty发送消息向Master注册并汇报自己的资源信息(内存以及CPU核数等),以后就是定时汇报,保持心跳。4.Master接受消息
- Spark 源码 | 脚本分析总结
董可伦
spark源码脚本
前言最初是想学习一下Spark提交流程的源码,比如SparkOnYarn、Standalone。之前只是通过网上总结的文章大概了解整体的提交流程,但是每个文章描述的又不太一样,弄不清楚到底哪个说的准确,比如Client和CLuster模式的区别,Driver到底是干啥的,是如何定义的,为了彻底弄清楚这些疑问,所以决定学习一下相关的源码。因为不管是服务启动还是应用程序启动,都是通过脚本提交的,所以我
- Spark性能调优-----常规性能调优(一)最优资源配置
weidajiangjiang
spark性能调优常规资源配置
1.1.1常规性能调优一:最优资源配置Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示:代码清单2-1标准Spark提交脚本/usr/opt/modules/spark/bin
- Spark性能调优系列:Spark资源模型以及调优
Mr Cao
大数据sparkSpark性能调优
Spark资源模型Spark内存模型Spark在一个Executor中的内存分为三块,execution内存、storage内存、other内存。execution内存是执行内存,join、aggregate都在这部分中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO,Map过程也是在这个内存中执行的。(0.25)storage内存是存储broadcast,cache
- spark 性能调优 (一):执行计划
LevenBigData
spark性能调优spark大数据
在Spark中,explain函数用于提供数据框(DataFrame)或SQL查询的逻辑计划和物理执行计划的详细解释。它可以帮助开发者理解Spark是如何执行查询的,包括优化过程、转换步骤以及它将采用的物理执行策略。1.逻辑计划(LogicalPlan)逻辑计划代表了Spark将应用于处理数据的抽象操作序列。它是基于用户提供的DataFrameAPI或SQL查询,经过优化前的中间表示。未优化的逻辑
- spark技术基础知识
24k小善
spark服务器
1.Spark的宽窄依赖划分Q:Spark中如何划分宽依赖和窄依赖?A:窄依赖:父RDD的每个分区最多被一个子RDD的分区依赖(如map、filter),不会触发shuffle。宽依赖:父RDD的每个分区可能被多个子RDD的分区依赖(如groupByKey、reduceByKey),会触发shuffle。Q:宽依赖和窄依赖对性能的影响是什么?A:窄依赖:计算效率高,数据不需要跨节点传输。宽依赖:涉
- Spark图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析sparkspringboot爬虫
Spark图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图书
- 计算机毕业设计hadoop+spark+hive新能源汽车数据分析可视化大屏 汽车推荐系统 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习 大数据毕业设计 深度学习 知识图谱 人工智能
qq+593186283
hadoop大数据人工智能
(1)设计目的本次设计一个基于Hive的新能源汽车数据仓管理系统。企业管理员登录系统后可以在汽车保养时,根据这些汽车内置传感器传回的数据分析其故障原因,以便维修人员更加及时准确处理相关的故障问题。或者对这些数据分析之后向车主进行预警提示车主注意保养汽车,以提高汽车行驶的安全系数。(2)设计要求利用Flume进行分布式的日志数据采集,Kafka实现高吞吐量的数据传输,DateX进行数据清洗、转换和整
- 【spark】【在YARN上运行Spark】【Running Spark on YARN】
资源存储库
spark
目录RunningSparkonYARN在YARN上运行SparkSecurity安全LaunchingSparkonYARN在YARN上启动SparkAddingOtherJARs添加其他JARPreparations筹备工作Configuration配置DebuggingyourApplication调试应用程序SparkProperties【Spark属性】Availablepatterns
- 在Jupyter Notebook中进行大数据分析:集成Apache Spark
范范0825
jupyter数据分析apache
在JupyterNotebook中进行大数据分析:集成ApacheSpark介绍JupyterNotebook是一款广泛使用的数据科学工具,结合ApacheSpark后,能够处理和分析大规模数据。ApacheSpark是一个快速的统一分析引擎,支持大数据处理和分布式计算。本教程将详细介绍如何在JupyterNotebook中集成和使用Spark进行大数据分析。前提条件基本的Python编程知识基本
- 知识图谱智能应用系统:数据分析与挖掘技术文档
光芒再现0394
知识图谱数据分析人工智能
一、概述在知识图谱智能应用系统中,数据分析与挖掘模块是实现知识发现和智能应用的核心环节。该模块负责处理和分析来自数据采集与预处理模块的结构化和半结构化数据,提取有价值的知识,并将其转化为可用于知识图谱构建和应用的三元组数据。本技术文档详细介绍了数据分析与挖掘模块中使用到的关键技术,包括SparkML、StanfordNLP、JNA、Jena、Python调用以及定时调度。二、技术栈介绍(一)Spa
- spark性能优化点(超详解!!!珍藏版!!!)
深漠大侠
sparkspark性能优化
spark性能优化点分配更多的资源1.1分配哪些资源1.2在哪里可以设置这些资源1.3参数调节到多大,算是最大分配更多的资源:它是性能优化调优的王道,就是增加和分配更多的资源,这对于性能和速度上的提升是显而易见的,基本上,在一定范围之内,增加资源与性能的提升,是成正比的;写完了一个复杂的spark作业之后,进行性能调优的时候,首先第一步,就是要来调节最优的资源配置;在这个基础之上,如果说你的spa
- spark1.6.0分布式安装
问道9527
sparkspark分布式集群
1.概述本文是对spark1.6.0分布式集群的安装的一个详细说明,旨在帮助相关人员按照本说明能够快速搭建并使用spark集群。2.安装环境本安装说明的示例环境部署如下:IP外网IPhostname备注10.47.110.38120.27.153.137iZ237654q6qZMaster、Slaver10.24.35.51114.55.56.190iZ23pd81xqaZSlaver10.45.
- spark安装与环境配置
Handoking
大数据进阶中sparkpython安装
1.安装spark官网http://spark.apache.org/downloads.html考虑到spark之后要结合hadoop一起使用,所以下载和已经安装hadoop版本均兼容的spark(首先安装好hadoop选择伪分布式配置(因为我是单机运行,有集群的朋友查看集群环境搭建的方法。)```)![这里写图片描述](https://img-blog.csdn.net/20180718201
- 3.5寸圈圈机移植阿木实验室P230旗舰款,纯视觉定位
永不炸机
无人机prometheusROSPX4c++
1、使用3.5寸圈圈机架Bee352、使用淘宝微空家四合一电调、PX4飞控、MTF-01光流3、使用淘宝华虎家的数传4、使用阿木家的Allspark1NX作为机载电脑,在Ubuntu18.04下运行ros和阿木实验室的Prometheus来控制无人机5、电池根据电调和飞控,使用4S3300mah的18650电池,也可使用6S的18650之类的硬包电池6、飞控固件用的1.14.0,参数只修改定位和m
- spark on yarn-cluster在生产环境 部署 spark 任务, 同时支持读取外部可配置化文件
千里风雪
sparklinux运维spark大数据hadoop
SparkYarn-cluster在生产环境部署,同时支持参数可配置化方法在Spark中,有Yarn-Client和Yarn-Cluster两种模式可以运行在Yarn上,通常Yarn-cluster适用于生产环境,而Yarn-Cluster更适用于交互,调试模式提示:前提条件有hadoop集群,可以在yarn上运行Job文章目录SparkYarn-cluster在生产环境部署,同时支持参数可配置化
- spark-pyspark-standalone部署模式全过程
哈哈哈哈q
spark大数据分布式
声明:1.参考视频b站黑马程序员视频,极力推荐这个视频,侵权删除https://www.bilibili.com/video/BV1Jq4y1z7VP/?spm_id_from=333.337.search-card.all.click&vd_source=3ae466b20a9e8eabdaa10e84c99758492.第一次配置,仅作为个人记录使用。3.参考黑马程序员standalone配置
- 大数据集群Spark-on-Yarn+Paddle深度学习模型部署
jqtree
#大数据开发大数据sparkpaddle
背景:因数据量较大,想要将模型部署到大数据集群上进行计算。测试环境:Spark版本:2.4.0Python版本:2.6.XPaddlePaddle版本:2.4.2处理器:CPU过程记录:1.python运行环境准备本人使用Anaconda管理虚拟环境。关于虚拟环境的准备:模型需要什么第三方库就安装哪些库,最后可以使用conda-pack打包虚拟环境。1.1conda-pack打包记录在虚拟环境里下
- 类库与框架、在window(pycharm)搭建pyspark库,连接Linux。
哈哈哈哈q
+sparkspark大数据分布式
类库:一堆别人写好的代码,可以直接导入使用,pandas框架:可以独立运行,软件产品,如sparkpandas用于:小规模数据集spark用于:大规模数据集pysparkpython的运行类库,内置了完全的sparkapi,可以通过pyspark类库类库来编写spark应用程序。并将其提交到spark集群中运行。搭建。。很麻烦,本地需要pycharm专业版,利用shh连接Linux中的ana库。测
- 案例1.spark和flink分别实现作业配置动态更新案例
wguangliang
Sparkflinkspark大数据分布式flinketl工程师
目录目录一、背景二、解决1.方法1:sparkbroadcast广播变量a.思路b.案例①需求②数据③代码2.方法2:flinkRichSourceFunctiona.思路b.案例①需求②数据③代码④测试验证测试1测试2测试3一、背景在实时作业(如SparkStreaming、Flink等流处理作业)中,通过外部配置管理系统动态修改配置,有以下优点:1.无需重启作业,实现配置热更新好处:实时作业通
- .getClass.getClassLoader.getResourceAsStream的方式加载文件,总是为null加载不到数据
抛砖者
idea
记录一个问题,我在用如下的代码加载配置文件的时候,总是加载不到数据,文件位置的对的SparkSessionBase.getClass.getClassLoader.getResourceAsStream(“spark-conf.properties”)解决这个问题的思路第一肯定是要去确定下,target目录下有没有这个文件,一般情况下八层是因为因为在编译的时候没有把配置文件给加载进来导致的,所以就
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- 一文带你了解Spark4新特性,开启大数据处理新篇章
敏叔V587
大数据
一文带你了解Spark4新特性,开启大数据处理新篇章在大数据处理的广袤天地中,ApacheSpark始终是熠熠生辉的存在,宛如一颗璀璨的明星框架,吸引着无数开发者与数据分析师的目光。技术的车轮滚滚向前,Spark4.0在万众瞩目中荣耀登场,携带着一系列令人热血沸腾的新特性,如同为大数据领域开启了一扇通往新世界的大门,带来了前所未有的变革。今天,就让我们一同踏上这场探索之旅,深入剖析Spark4.0
- 当大模型遇上Spark:解锁大数据处理新姿势
敏叔V587
spark大数据分布式
大模型与Spark:技术初印象在当今数字化浪潮中,大模型和Spark无疑是备受瞩目的两大技术。它们各自在人工智能和大数据处理领域大放异彩,而当这两者相遇,又会碰撞出怎样的火花呢?让我们先来分别认识一下大模型和Spark。大模型,即大规模机器学习模型,是利用海量数据和强大算力训练出来的“大参数”模型。其发展历程可谓是一部科技创新的传奇史。从20世纪中叶人工智能概念的提出,到2006年深度学习技术崭露
- 深度解读Kafka数据可靠性
程序の之道
kafkahiveyarnsparkhadoop
Kafka起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用。目前越来越多的开源分布式处理系统如Cloudera、ApacheStorm、Spark等都支持与Kafka集成。1概述Kafka与传统消息系统相比,有以下不同:•它被设计为一个分布式系统,易于向外扩展;•它同时为发布和订阅提供高吞吐量;•它支持多订
- 如何处理大规模数据集中的数据处理:Spark和ApacheFlink
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明数据处理(DataProcessing)任务调度(TaskScheduling)HadoopApacheSparkApacheFlink3.核心算法原理和具体操作步骤以及数学公式讲解1.MapReduce(1)概述(2)算法原理分布式文件系统Map阶段Shuffle阶段Reduce阶段MapReduce的流程示意图Map阶段Shuffle阶段Reduce阶段执行
- Spark Container killed by YARN for exceeding memory limits. 11.1 GB of 11 GB physical memory used
Called_Kingsley
BigDataSparksparkyarn
公司SparkSql运行出现问题同事要求帮忙排查下原因日志:19-10-202110:12:06CSTSPARK_SQL-1632390310963INFO-SLF4J:Seehttp://www.slf4j.org/codes.html#multiple_bindingsforanexplanation.19-10-202110:12:06CSTSPARK_SQL-1632390310963IN
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p