ORBSLAM2源码学习(7) Initializer类

Initializer类主要负责SLAM系统的初始化,在ORB中初始化非常重要,好的初始化是系统后续更少出错的基础。以单目为例,ORB中创建了一个初始化器,负责初始化工作。

void Tracking::MonocularInitialization()
{
    // 如果单目初始化器还没有被创建,则创建单目初始化器
    if(!mpInitializer)
    {
        // Set Reference Frame
        // 特征点数必须大于100
        if(mCurrentFrame.mvKeys.size()>100)
        {
            // 得到用于初始化的第一帧,初始化需要两帧
            mInitialFrame = Frame(mCurrentFrame);
            mLastFrame = Frame(mCurrentFrame);
            mvbPrevMatched.resize(mCurrentFrame.mvKeysUn.size());
            for(size_t i=0; i(NULL);
            fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
            return;
        }

        // Find correspondences
        // 在mInitialFrame与mCurrentFrame中找匹配的特征点对
        // mvbPrevMatched为前一帧的特征点,存储了mInitialFrame中哪些点将进行接下来的匹配
        // mvIniMatches存储mInitialFrame,mCurrentFrame之间匹配的特征点
        ORBmatcher matcher(0.9,true);
        int nmatches = matcher.SearchForInitialization(mInitialFrame,mCurrentFrame,mvbPrevMatched,mvIniMatches,100);

        // Check if there are enough correspondences
        // 如果初始化的两帧之间的匹配点太少,重新初始化
        if(nmatches<100)
        {
            delete mpInitializer;
            mpInitializer = static_cast(NULL);
            return;
        }

        cv::Mat Rcw; // Current Camera Rotation
        cv::Mat tcw; // Current Camera Translation
        vector vbTriangulated; // Triangulated Correspondences (mvIniMatches)

        // 通过H模型或F模型进行单目初始化,得到两帧间相对运动、初始MapPoints
        if(mpInitializer->Initialize(mCurrentFrame, mvIniMatches, Rcw, tcw, mvIniP3D, vbTriangulated))
        {
            // 删除无法进行三角化的匹配点
            for(size_t i=0, iend=mvIniMatches.size(); i=0 && !vbTriangulated[i])
                {
                    mvIniMatches[i]=-1;
                    nmatches--;
                }
            }

            // Set Frame Poses
            // 将初始化的第一帧作为世界坐标系,因此第一帧变换矩阵为单位矩阵
            mInitialFrame.SetPose(cv::Mat::eye(4,4,CV_32F));
            cv::Mat Tcw = cv::Mat::eye(4,4,CV_32F);
            Rcw.copyTo(Tcw.rowRange(0,3).colRange(0,3));
            tcw.copyTo(Tcw.rowRange(0,3).col(3));
            mCurrentFrame.SetPose(Tcw);

            // 将三角化得到的3D点包装成MapPoints
            CreateInitialMapMonocular();
        }
    }
}

上面一段代码是跟踪mono_tum.cc 文件时会进入的一个函数,负责初始化工作,可以看到,ORB的初始化要求连续两帧的特征点都比较丰富且有足够匹配的特征点时才进行初始化工作,并且初始化时提取更多的特征点。

// 构造Frame
    if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET)// 没有成功初始化的前一个状态就是NO_IMAGES_YET,使用mpIniORBextractor提取更多特征点
        mCurrentFrame = Frame(mImGray,timestamp,mpIniORBextractor,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);
    else
        mCurrentFrame = Frame(mImGray,timestamp,mpORBextractorLeft,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);

下面是初始化这个类的完整代码,这个类不同其他类的是很多地方使用的方法比较固定,都是书上或者论文中固定的方法。

#include "Initializer.h"

#include "Thirdparty/DBoW2/DUtils/Random.h"

#include "Optimizer.h"
#include "ORBmatcher.h"

#include

namespace ORB_SLAM2
{

Initializer::Initializer(const Frame &ReferenceFrame, float sigma, int iterations)
{
    mK = ReferenceFrame.mK.clone();

    mvKeys1 = ReferenceFrame.mvKeysUn;

    mSigma = sigma;
    mSigma2 = sigma*sigma;
    mMaxIterations = iterations;
}

// 并行地计算基础矩阵和单应性矩阵,选取其中一个模型,恢复出最开始两帧之间的相对姿态以及点云
bool Initializer::Initialize(const Frame &CurrentFrame, const vector &vMatches12, cv::Mat &R21, cv::Mat &t21,
                             vector &vP3D, vector &vbTriangulated)
{
    // Fill structures with current keypoints and matches with reference frame
    // Reference Frame: 1, Current Frame: 2
    // Frame2 特征点
    mvKeys2 = CurrentFrame.mvKeysUn;

    mvMatches12.clear();
    mvMatches12.reserve(mvKeys2.size());
    // mvbMatched1记录每个特征点是否有匹配的特征点,
    mvbMatched1.resize(mvKeys1.size());

    for(size_t i=0, iend=vMatches12.size();i=0)
        {
            mvMatches12.push_back(make_pair(i,vMatches12[i]));
            mvbMatched1[i]=true;
        }
        else
            mvbMatched1[i]=false;
    }

    // 匹配上的特征点的个数
    const int N = mvMatches12.size();

    // Indices for minimum set selection
    vector vAllIndices;
    vAllIndices.reserve(N);
    vector vAvailableIndices;

    for(int i=0; i >(mMaxIterations,vector(8,0));

    DUtils::Random::SeedRandOnce(0);

    for(int it=0; it vbMatchesInliersH, vbMatchesInliersF;
    float SH, SF; // score for H and F
    cv::Mat H, F; // H and F

    // 计算homograpy和得分
    thread threadH(&Initializer::FindHomography,this,ref(vbMatchesInliersH), ref(SH), ref(H));
    // 计算fundamental和得分
    thread threadF(&Initializer::FindFundamental,this,ref(vbMatchesInliersF), ref(SF), ref(F));

    // Wait until both threads have finished
    threadH.join();
    threadF.join();

    // Compute ratio of scores
    // 计算得分比例,选取某个模型
    float RH = SH/(SH+SF);

    // Try to reconstruct from homography or fundamental depending on the ratio (0.40-0.45)
    // 从H矩阵或F矩阵中恢复R,t
    if(RH>0.40)
        return ReconstructH(vbMatchesInliersH,H,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
    else //if(pF_HF>0.6)
        return ReconstructF(vbMatchesInliersF,F,mK,R21,t21,vP3D,vbTriangulated,1.0,50);

    return false;
}

// 假设场景为平面情况下通过前两帧求取Homography矩阵,并得到该模型的评分
void Initializer::FindHomography(vector &vbMatchesInliers, float &score, cv::Mat &H21)
{
    // Number of putative matches
    const int N = mvMatches12.size();

    // Normalize coordinates
    // 将特征点坐标归一化到均值为0,一阶绝对矩为1,归一化矩阵分别为T1、T2
    vector vPn1, vPn2;
    cv::Mat T1, T2;
	// 归一化操作
    Normalize(mvKeys1,vPn1, T1);
    Normalize(mvKeys2,vPn2, T2);
    cv::Mat T2inv = T2.inv();

    // Best Results variables
    // 最佳的MatchesInliers与得分
    score = 0.0;
    vbMatchesInliers = vector(N,false);

    // Iteration variables
    vector vPn1i(8);
    vector vPn2i(8);
    cv::Mat H21i, H12i;
    // 每次RANSAC的MatchesInliers与得分
    vector vbCurrentInliers(N,false);
    float currentScore;

    // Perform all RANSAC iterations and save the solution with highest score
    for(int it=0; itscore)
        {
            H21 = H21i.clone();
            vbMatchesInliers = vbCurrentInliers;
            score = currentScore;
        }
    }
}

// 假设场景为非平面情况下通过前两帧求取Fundamental矩阵,并得到该模型的评分
void Initializer::FindFundamental(vector &vbMatchesInliers, float &score, cv::Mat &F21)
{
    // Number of putative matches
    const int N = vbMatchesInliers.size();

    // Normalize coordinates
    vector vPn1, vPn2;
    cv::Mat T1, T2;
    Normalize(mvKeys1,vPn1, T1);
    Normalize(mvKeys2,vPn2, T2);
    cv::Mat T2t = T2.t();

    // Best Results variables
    score = 0.0;
    vbMatchesInliers = vector(N,false);

    // Iteration variables
    vector vPn1i(8);
    vector vPn2i(8);
    cv::Mat F21i;
    vector vbCurrentInliers(N,false);
    float currentScore;

    // Perform all RANSAC iterations and save the solution with highest score
    for(int it=0; itscore)
        {
            F21 = F21i.clone();
            vbMatchesInliers = vbCurrentInliers;
            score = currentScore;
        }
    }
}

// |x'|     | h1 h2 h3 ||x|
// |y'| = a | h4 h5 h6 ||y|  x' = a H x, a为尺度因子
// |1 |     | h7 h8 h9 ||1|
// 使用DLT求解该模型
// x' = a H x 
// (x') 叉乘 (H x)  = 0
//  Ah = 0
// A = | 0  0  0 -x -y -1 xy' yy' y'|  h = | h1 h2 h3 h4 h5 h6 h7 h8 h9 |
//     |-x -y -1  0  0  0 xx' yx' x'|
// 通过SVD求解Ah = 0,A'A最小特征值对应的特征向量即为解
// Algorithm 4.1 in MVG
cv::Mat Initializer::ComputeH21(const vector &vP1, const vector &vP2)
{
    const int N = vP1.size();

    cv::Mat A(2*N,9,CV_32F); // 2N*9

    for(int i=0; i(2*i,0) = 0.0;
        A.at(2*i,1) = 0.0;
        A.at(2*i,2) = 0.0;
        A.at(2*i,3) = -u1;
        A.at(2*i,4) = -v1;
        A.at(2*i,5) = -1;
        A.at(2*i,6) = v2*u1;
        A.at(2*i,7) = v2*v1;
        A.at(2*i,8) = v2;

        A.at(2*i+1,0) = u1;
        A.at(2*i+1,1) = v1;
        A.at(2*i+1,2) = 1;
        A.at(2*i+1,3) = 0.0;
        A.at(2*i+1,4) = 0.0;
        A.at(2*i+1,5) = 0.0;
        A.at(2*i+1,6) = -u2*u1;
        A.at(2*i+1,7) = -u2*v1;
        A.at(2*i+1,8) = -u2;

    }

    cv::Mat u,w,vt;

    cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    return vt.row(8).reshape(0, 3); 	// v的最后一列
}

// x'Fx = 0 整理可得:Af = 0
// A = | x'x x'y x' y'x y'y y' x y 1 |, f = | f1 f2 f3 f4 f5 f6 f7 f8 f9 |
// 通过SVD求解Af = 0,A'A最小特征值对应的特征向量即为解
// Algorithm 11.1 in MVG
cv::Mat Initializer::ComputeF21(const vector &vP1,const vector &vP2)
{
    const int N = vP1.size();

    cv::Mat A(N,9,CV_32F); // N*9

    for(int i=0; i(i,0) = u2*u1;
        A.at(i,1) = u2*v1;
        A.at(i,2) = u2;
        A.at(i,3) = v2*u1;
        A.at(i,4) = v2*v1;
        A.at(i,5) = v2;
        A.at(i,6) = u1;
        A.at(i,7) = v1;
        A.at(i,8) = 1;
    }

    cv::Mat u,w,vt;

    cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    cv::Mat Fpre = vt.row(8).reshape(0, 3); // v的最后一列

    cv::SVDecomp(Fpre,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    w.at(2)=0; 		// 添加秩为2的约束,将第3个奇异值设为0

    return  u*cv::Mat::diag(w)*vt;
}

// 对给定的homography matrix打分
float Initializer::CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector &vbMatchesInliers, float sigma)
{   
    const int N = mvMatches12.size();
	
    const float h11 = H21.at(0,0);
    const float h12 = H21.at(0,1);
    const float h13 = H21.at(0,2);
    const float h21 = H21.at(1,0);
    const float h22 = H21.at(1,1);
    const float h23 = H21.at(1,2);
    const float h31 = H21.at(2,0);
    const float h32 = H21.at(2,1);
    const float h33 = H21.at(2,2);

    const float h11inv = H12.at(0,0);
    const float h12inv = H12.at(0,1);
    const float h13inv = H12.at(0,2);
    const float h21inv = H12.at(1,0);
    const float h22inv = H12.at(1,1);
    const float h23inv = H12.at(1,2);
    const float h31inv = H12.at(2,0);
    const float h32inv = H12.at(2,1);
    const float h33inv = H12.at(2,2);

    vbMatchesInliers.resize(N);

    float score = 0;

    // 基于卡方检验
    const float th = 5.991;

    const float invSigmaSquare = 1.0/(sigma*sigma);

    // N对特征匹配点
    for(int i=0; ith)
            bIn = false;
        else
            score += th - chiSquare1;

        // Reprojection error in second image
        // 将图像1中的特征点单应到图像2中
        const float w1in2inv = 1.0/(h31*u1+h32*v1+h33);
        const float u1in2 = (h11*u1+h12*v1+h13)*w1in2inv;
        const float v1in2 = (h21*u1+h22*v1+h23)*w1in2inv;

        const float squareDist2 = (u2-u1in2)*(u2-u1in2)+(v2-v1in2)*(v2-v1in2);

        const float chiSquare2 = squareDist2*invSigmaSquare;

        if(chiSquare2>th)
            bIn = false;
        else
            score += th - chiSquare2;

        if(bIn)
            vbMatchesInliers[i]=true;
        else
            vbMatchesInliers[i]=false;
    }

    return score;
}

// 对给定的fundamental matrix打分
float Initializer::CheckFundamental(const cv::Mat &F21, vector &vbMatchesInliers, float sigma)
{
    const int N = mvMatches12.size();

    const float f11 = F21.at(0,0);
    const float f12 = F21.at(0,1);
    const float f13 = F21.at(0,2);
    const float f21 = F21.at(1,0);
    const float f22 = F21.at(1,1);
    const float f23 = F21.at(1,2);
    const float f31 = F21.at(2,0);
    const float f32 = F21.at(2,1);
    const float f33 = F21.at(2,2);

    vbMatchesInliers.resize(N);

    float score = 0;

    const float th = 3.841;
    const float thScore = 5.991;

    const float invSigmaSquare = 1.0/(sigma*sigma);

    for(int i=0; ith)
            bIn = false;
        else
            score += thScore - chiSquare1;

        // Reprojection error in second image
        const float a1 = f11*u2+f21*v2+f31;
        const float b1 = f12*u2+f22*v2+f32;
        const float c1 = f13*u2+f23*v2+f33;

        const float num1 = a1*u1+b1*v1+c1;

        const float squareDist2 = num1*num1/(a1*a1+b1*b1);

        const float chiSquare2 = squareDist2*invSigmaSquare;

        if(chiSquare2>th)
            bIn = false;
        else
            score += thScore - chiSquare2;

        if(bIn)
            vbMatchesInliers[i]=true;
        else
            vbMatchesInliers[i]=false;
    }

    return score;
}


//                          |0 -1  0|
// E = U Sigma V'   let W = |1  0  0|
//                          |0  0  1|
// 得到4个解 E = [R|t]
// R1 = UWV' R2 = UW'V' t1 = U3 t2 = -U3

// 从F恢复R t
// MVG 9.19
bool Initializer::ReconstructF(vector &vbMatchesInliers, cv::Mat &F21, cv::Mat &K,
                            cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated)
{
    int N=0;
    for(size_t i=0, iend = vbMatchesInliers.size() ; i vP3D1, vP3D2, vP3D3, vP3D4;
    vector vbTriangulated1,vbTriangulated2,vbTriangulated3, vbTriangulated4;
    float parallax1,parallax2, parallax3, parallax4;

    int nGood1 = CheckRT(R1,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D1, 4.0*mSigma2, vbTriangulated1, parallax1);
    int nGood2 = CheckRT(R2,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D2, 4.0*mSigma2, vbTriangulated2, parallax2);
    int nGood3 = CheckRT(R1,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D3, 4.0*mSigma2, vbTriangulated3, parallax3);
    int nGood4 = CheckRT(R2,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D4, 4.0*mSigma2, vbTriangulated4, parallax4);

    int maxGood = max(nGood1,max(nGood2,max(nGood3,nGood4)));

    R21 = cv::Mat();
    t21 = cv::Mat();

    // minTriangulated为可以三角化恢复三维点的个数
    int nMinGood = max(static_cast(0.9*N),minTriangulated);

    int nsimilar = 0;
    if(nGood1>0.7*maxGood)
        nsimilar++;
    if(nGood2>0.7*maxGood)
        nsimilar++;
    if(nGood3>0.7*maxGood)
        nsimilar++;
    if(nGood4>0.7*maxGood)
        nsimilar++;

    // If there is not a clear winner or not enough triangulated points reject initialization
    // 四个结果中如果没有明显的最优结果,则返回失败
    if(maxGood1)
    {
        return false;
    }

    // If best reconstruction has enough parallax initialize
    if(maxGood==nGood1)
    {
        if(parallax1>minParallax)
        {
            vP3D = vP3D1;
            vbTriangulated = vbTriangulated1;

            R1.copyTo(R21);
            t1.copyTo(t21);
            return true;
        }
    }else if(maxGood==nGood2)
    {
        if(parallax2>minParallax)
        {
            vP3D = vP3D2;
            vbTriangulated = vbTriangulated2;

            R2.copyTo(R21);
            t1.copyTo(t21);
            return true;
        }
    }else if(maxGood==nGood3)
    {
        if(parallax3>minParallax)
        {
            vP3D = vP3D3;
            vbTriangulated = vbTriangulated3;

            R1.copyTo(R21);
            t2.copyTo(t21);
            return true;
        }
    }else if(maxGood==nGood4)
    {
        if(parallax4>minParallax)
        {
            vP3D = vP3D4;
            vbTriangulated = vbTriangulated4;

            R2.copyTo(R21);
            t2.copyTo(t21);
            return true;
        }
    }

    return false;
}

// H恢复R,t
// 参考Faugeras SVD-based decomposition
bool Initializer::ReconstructH(vector &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
                      cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated)
{
    int N=0;
    for(size_t i=0, iend = vbMatchesInliers.size() ; i(0);
    float d2 = w.at(1);
    float d3 = w.at(2);

    // 检查特征值是否降序排列
    if(d1/d2<1.00001 || d2/d3<1.00001)
    {
        return false;
    }

    vector vR, vt, vn;
    vR.reserve(8);
    vt.reserve(8);
    vn.reserve(8);

    //n'=[x1 0 x3] 4 posibilities e1=e3=1, e1=1 e3=-1, e1=-1 e3=1, e1=e3=-1
    float aux1 = sqrt((d1*d1-d2*d2)/(d1*d1-d3*d3));
    float aux3 = sqrt((d2*d2-d3*d3)/(d1*d1-d3*d3));
    float x1[] = {aux1,aux1,-aux1,-aux1};
    float x3[] = {aux3,-aux3,aux3,-aux3};

    //case d'=d2
    float aux_stheta = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1+d3)*d2);

    float ctheta = (d2*d2+d1*d3)/((d1+d3)*d2);
    float stheta[] = {aux_stheta, -aux_stheta, -aux_stheta, aux_stheta};

    for(int i=0; i<4; i++)
    {
        cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
        Rp.at(0,0)=ctheta;
        Rp.at(0,2)=-stheta[i];
        Rp.at(2,0)=stheta[i];
        Rp.at(2,2)=ctheta;

        cv::Mat R = s*U*Rp*Vt;
        vR.push_back(R);

        cv::Mat tp(3,1,CV_32F);
        tp.at(0)=x1[i];
        tp.at(1)=0;
        tp.at(2)=-x3[i];
        tp*=d1-d3;

        cv::Mat t = U*tp;
        vt.push_back(t/cv::norm(t));

        cv::Mat np(3,1,CV_32F);
        np.at(0)=x1[i];
        np.at(1)=0;
        np.at(2)=x3[i];

        cv::Mat n = V*np;
        if(n.at(2)<0)
            n=-n;
        vn.push_back(n);
    }

    float aux_sphi = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1-d3)*d2);

    float cphi = (d1*d3-d2*d2)/((d1-d3)*d2);
    float sphi[] = {aux_sphi, -aux_sphi, -aux_sphi, aux_sphi};

    for(int i=0; i<4; i++)
    {
        cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
        Rp.at(0,0)=cphi;
        Rp.at(0,2)=sphi[i];
        Rp.at(1,1)=-1;
        Rp.at(2,0)=sphi[i];
        Rp.at(2,2)=-cphi;

        cv::Mat R = s*U*Rp*Vt;
        vR.push_back(R);

        cv::Mat tp(3,1,CV_32F);
        tp.at(0)=x1[i];
        tp.at(1)=0;
        tp.at(2)=x3[i];
        tp*=d1+d3;

        cv::Mat t = U*tp;
        vt.push_back(t/cv::norm(t));

        cv::Mat np(3,1,CV_32F);
        np.at(0)=x1[i];
        np.at(1)=0;
        np.at(2)=x3[i];

        cv::Mat n = V*np;
        if(n.at(2)<0)
            n=-n;
        vn.push_back(n);
    }


    int bestGood = 0;
    int secondBestGood = 0;    
    int bestSolutionIdx = -1;
    float bestParallax = -1;
    vector bestP3D;
    vector bestTriangulated;

    // Instead of applying the visibility constraints proposed in the Faugeras' paper (which could fail for points seen with low parallax)
    // We reconstruct all hypotheses and check in terms of triangulated points and parallax
    for(size_t i=0; i<8; i++)
    {
        float parallaxi;
        vector vP3Di;
        vector vbTriangulatedi;
        int nGood = CheckRT(vR[i],vt[i],mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K,vP3Di, 4.0*mSigma2, vbTriangulatedi, parallaxi);

        // 保留最优的和次优的
        if(nGood>bestGood)
        {
            secondBestGood = bestGood;
            bestGood = nGood;
            bestSolutionIdx = i;
            bestParallax = parallaxi;
            bestP3D = vP3Di;
            bestTriangulated = vbTriangulatedi;
        }
        else if(nGood>secondBestGood)
        {
            secondBestGood = nGood;
        }
    }


    if(secondBestGood<0.75*bestGood && bestParallax>=minParallax && bestGood>minTriangulated && bestGood>0.9*N)
    {
        vR[bestSolutionIdx].copyTo(R21);
        vt[bestSolutionIdx].copyTo(t21);
        vP3D = bestP3D;
        vbTriangulated = bestTriangulated;

        return true;
    }

    return false;
}

// 三角化
// MVG - 12.2
// 已知匹配特征点对{x x'}和相机矩阵{P P'}, 估计三维点 X
// x' = P'X  x = PX
//                         |X|
// |x|     |p1 p2  p3  p4 ||Y|     |x|    |--p0--||.|
// |y| = a |p5 p6  p7  p8 ||Z| ===>|y| = a|--p1--||X|
// |z|     |p9 p10 p11 p12||1|     |z|    |--p2--||.|
// 采用DLT的方法:x叉乘PX = 0
// |yp2 -  p1|     |0|
// |p0 -  xp2| X = |0|
// |xp1 - yp0|     |0|
// 两个点:
// |yp2   -  p1  |     |0|
// |p0    -  xp2 | X = |0| ===> AX = 0
// |y'p2' -  p1' |     |0|
// |p0'   - x'p2'|     |0| 
void Initializer::Triangulate(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &P1, const cv::Mat &P2, cv::Mat &x3D)
{
    cv::Mat A(4,4,CV_32F);

    A.row(0) = kp1.pt.x*P1.row(2)-P1.row(0);
    A.row(1) = kp1.pt.y*P1.row(2)-P1.row(1);
    A.row(2) = kp2.pt.x*P2.row(2)-P2.row(0);
    A.row(3) = kp2.pt.y*P2.row(2)-P2.row(1);

    cv::Mat u,w,vt;
    cv::SVD::compute(A,w,u,vt,cv::SVD::MODIFY_A| cv::SVD::FULL_UV);
    x3D = vt.row(3).t();
    x3D = x3D.rowRange(0,3)/x3D.at(3);
}

// 归一化特征点
void Initializer::Normalize(const vector &vKeys, vector &vNormalizedPoints, cv::Mat &T)
{
    float meanX = 0;
    float meanY = 0;
    const int N = vKeys.size();

    vNormalizedPoints.resize(N);

    for(int i=0; i(0,0) = sX;
    T.at(1,1) = sY;
    T.at(0,2) = -meanX*sX;
    T.at(1,2) = -meanY*sY;
}

// 检查每一组解
int Initializer::CheckRT(const cv::Mat &R, const cv::Mat &t, const vector &vKeys1, const vector &vKeys2,
                       const vector &vMatches12, vector &vbMatchesInliers,
                       const cv::Mat &K, vector &vP3D, float th2, vector &vbGood, float ¶llax)
{
    // Calibration parameters
    const float fx = K.at(0,0);
    const float fy = K.at(1,1);
    const float cx = K.at(0,2);
    const float cy = K.at(1,2);

    vbGood = vector(vKeys1.size(),false);
    vP3D.resize(vKeys1.size());

    vector vCosParallax;
    vCosParallax.reserve(vKeys1.size());

    // Camera 1 Projection Matrix K[I|0]
    // 以第一个相机的光心作为世界坐标系
    cv::Mat P1(3,4,CV_32F,cv::Scalar(0));
    K.copyTo(P1.rowRange(0,3).colRange(0,3));
    // 第一个相机的光心在世界下的坐标
    cv::Mat O1 = cv::Mat::zeros(3,1,CV_32F);

    // Camera 2 Projection Matrix K[R|t]
    // 第二个相机的投影矩阵
    cv::Mat P2(3,4,CV_32F);
    R.copyTo(P2.rowRange(0,3).colRange(0,3));
    t.copyTo(P2.rowRange(0,3).col(3));
    P2 = K*P2;
    // 第二个相机的光心在世界系下的坐标
    cv::Mat O2 = -R.t()*t;

    int nGood=0;

    for(size_t i=0, iend=vMatches12.size();i(0)) || !isfinite(p3dC1.at(1)) || !isfinite(p3dC1.at(2)))
        {
            vbGood[vMatches12[i].first]=false;
            continue;
        }

        // Check parallax
        // 计算视差角余弦值
		// 相机1至3D点的向量和距离
        cv::Mat normal1 = p3dC1 - O1;
        float dist1 = cv::norm(normal1);
		// 相机2至3D点的向量和距离
        cv::Mat normal2 = p3dC1 - O2;
        float dist2 = cv::norm(normal2);

        float cosParallax = normal1.dot(normal2)/(dist1*dist2);

        // 判断3D点是否在两个摄像头前方
        // Check depth in front of first camera (only if enough parallax, as "infinite" points can easily go to negative depth)
        // 3D点深度为负,在第一个摄像头后方,淘汰
        if(p3dC1.at(2)<=0 && cosParallax<0.99998)
            continue;

        // Check depth in front of second camera (only if enough parallax, as "infinite" points can easily go to negative depth)
        // 3D点深度为负,在第二个摄像头后方,淘汰
        cv::Mat p3dC2 = R*p3dC1+t;

        if(p3dC2.at(2)<=0 && cosParallax<0.99998)
            continue;

        // Check reprojection error in first image
        // 计算3D点在第一个图像上的投影误差
        float im1x, im1y;
        float invZ1 = 1.0/p3dC1.at(2);
        im1x = fx*p3dC1.at(0)*invZ1+cx;
        im1y = fy*p3dC1.at(1)*invZ1+cy;

        float squareError1 = (im1x-kp1.pt.x)*(im1x-kp1.pt.x)+(im1y-kp1.pt.y)*(im1y-kp1.pt.y);

        // 重投影误差太大,淘汰
        // 一般视差角比较小时重投影误差比较大
        if(squareError1>th2)
            continue;

        // Check reprojection error in second image
        // 计算3D点在第二个图像上的投影误差
        float im2x, im2y;
        float invZ2 = 1.0/p3dC2.at(2);
        im2x = fx*p3dC2.at(0)*invZ2+cx;
        im2y = fy*p3dC2.at(1)*invZ2+cy;

        float squareError2 = (im2x-kp2.pt.x)*(im2x-kp2.pt.x)+(im2y-kp2.pt.y)*(im2y-kp2.pt.y);

        // 重投影误差太大,跳过淘汰
        if(squareError2>th2)
            continue;

        // 统计经过检验的3D点个数,记录3D点视差角
        vCosParallax.push_back(cosParallax);
        vP3D[vMatches12[i].first] = cv::Point3f(p3dC1.at(0),p3dC1.at(1),p3dC1.at(2));
        nGood++;

        if(cosParallax<0.99998)
            vbGood[vMatches12[i].first]=true;
    }

    // 得到3D点中较大的视差角
    if(nGood>0)
    {
        // 从小到大排序
        sort(vCosParallax.begin(),vCosParallax.end());

        // 取一个较大的视差角
        size_t idx = min(50,int(vCosParallax.size()-1));
        parallax = acos(vCosParallax[idx])*180/CV_PI;
    }
    else
        parallax=0;

    return nGood;
}

// F矩阵通过结合内参可以得到Essential矩阵,分解E矩阵将得到4组解 
// MVG 9.19
void Initializer::DecomposeE(const cv::Mat &E, cv::Mat &R1, cv::Mat &R2, cv::Mat &t)
{
    cv::Mat u,w,vt;
    cv::SVD::compute(E,w,u,vt);

    u.col(2).copyTo(t);
    t=t/cv::norm(t);

    cv::Mat W(3,3,CV_32F,cv::Scalar(0));
    W.at(0,1)=-1;
    W.at(1,0)=1;
    W.at(2,2)=1;

    R1 = u*W*vt;
    if(cv::determinant(R1)<0) // 旋转矩阵有行列式为1的约束
        R1=-R1;

    R2 = u*W.t()*vt;
    if(cv::determinant(R2)<0)
        R2=-R2;
}

} //namespace ORB_SLAM

 

你可能感兴趣的:(SLAM研究)