- PySpark安装及WordCount实现(基于Ubuntu)
uui1885478445
ubuntulinux运维
在Ubuntu上安装PySpark并实现WordCount,需要以下步骤:安装PySpark:安装Java:PySpark需要Java运行环境。你可以使用以下命令安装OpenJDK:sudoaptupdatesudoaptinstalldefault-jredefault-jdk安装Scala:PySpark还需要Scala,可以使用以下命令安装:sudoaptinstallscala安装Pyth
- Scala语言的硬件驱动
花韵婷
包罗万象golang开发语言后端
使用Scala语言进行硬件驱动开发引言随着计算机技术的快速发展,硬件设备的交互和控制在现代应用中显得尤为重要。大多数硬件驱动程序都用C或C++编写,但随着Scala语言的流行及其在数据处理和并发编程中的优势,越来越多的开发者开始探讨利用Scala进行硬件驱动开发的可能性。本文将深入探讨Scala语言在硬件驱动开发中的应用、优势、以及一些实际案例。什么是硬件驱动硬件驱动(DeviceDriver)是
- Java_实例变量和局部变量及this关键字详解
Matrix70
Javajava开发语言
最近得看看Java,想学一学Flink实时的东西了,当然Scala语法也有这样的规定,简单看一下这两个吧,都比较容易忽视实例变量和局部变量实例变量和局部变量是常见的两种变量类型,区别作用域:实例变量:实例变量属于类的实例,可以在整个类中被访问和使用。每个类的实例(对象)都有一份自己的实例变量副本。局部变量:局部变量只在声明它的方法或代码块中可见,超出该范围就无法访问。生存周期:实例变量:实例变量的
- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- PyTorch 中的混合精度训练方法,从 autocast 到 GradScalar
Syntax_CD
PyTorch必知必会pytorch人工智能python
PyTorch的混合精度训练主要由两个方法实现:amp.autocast和amp.GradScalar。在这两个工具的帮助下,可以实现以torch.float16的混合精度训练。当然,这两个方法都是模块化并且通常都会一起调用,但并不一定总是需要一起使用。参考:AutomaticMixedPrecisionpackage-torch.ampAutomaticMixedPrecisionexample
- scala针对复杂数据源导入与分隔符乱码处理
Tometor
scalajavascript后端java数据结构
复杂的数据源,和奇怪的数据格式是生产中经常遇到的难题,本文将探讨如何解析分隔符混乱的数据,和如何导入各种数据源文件一、非标准分隔符处理当数据源的分隔符混乱或不统一时(如,、|、\t混合使用),可采用以下方法:1.1动态检测分隔符//示例:自动检测前100行的常用分隔符valsampleLines=spark.read.text("data.csv").limit(100).collect()val
- WHALE: TOWARDS GENERALIZABLE AND SCALABLE WORLD Models for Embodied Decision-making 翻译
Doc2X
经典论文翻译人工智能
Doc2X|PDF到Markdown一步搞定只需几秒,Doc2X即可将PDF转换为Markdown,支持批量处理和深度翻译功能。Doc2X|One-StepPDFtoMarkdownConversionInjustseconds,Doc2XconvertsPDFstoMarkdown,withsupportforbatchprocessingandadvancedtranslationfeatur
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- Scala_Spark_RDD_parttwo
Gadaite
Spark基础scalasparkbigdata
只做记录不展示结果(部分结果放在了代码的注释中):packagespark_rddimportorg.apache.spark.sql.SparkSessionobjectrdd_fiveextendsApp{overridedefmain(args:Array[String]):Unit={/***key-valueRDD*pairRDD*2021-10-31*/valp="-----"*20v
- Spark scala api(一)RDD编程
weixin_42521881
spark学习
基础初始化sparkvalconf=newSparkConf().setAppName("wordcount")valsc=newSparkContext(conf)转化操作和行动操作的区别在于spark计算rdd的方式不同,只有在第一次在一个行动操作中用到转化操作中的rdd时,才会真正计算这些rdd。创建rdd//驱动器程序对一个集合进行并行化vallines=sc.parallelize(Li
- Scala :identity 函数
WZMeiei
Scalascala开发语言
在Scala中,identity函数是一个简单而有用的函数,主要用于返回其输入参数的值,而不进行任何修改。以下是关于identity函数的详细介绍:函数定义identity函数的定义非常简洁,它接受一个参数并返回该参数本身。在Scala的标准库中,identity函数的定义如下:defidentity[A](x:A):A=x这里的A是一个类型参数,表示identity函数可以接受任何类型的参数,并
- Scala 中生成一个RDD的方法
闯闯桑
scala开发语言大数据
在Scala中,生成RDD(弹性分布式数据集)的主要方法是通过SparkContext(或SparkSession)提供的API。以下是生成RDD的常见方法:1.从本地集合创建RDD使用parallelize方法将本地集合(如Seq、List、Array等)转换为RDD。valspark=SparkSession.builder.appName("RDDExample").getOrCreate(
- 论文阅读:Recipe for a General, Powerful, Scalable Graph Transformer
不会&编程
图神经网络论文阅读论文阅读transformer深度学习图神经网络人工智能
RecipeforaGeneral,Powerful,ScalableGraphTransformer论文和代码地址1介绍与贡献2GPS模型2.1模型框架图2.2PE和SE2.3GPSlayer:一种MPNN+Transformer的混合模型GraphTransformer)论文和代码地址论文地址:https://arxiv.org/pdf/2205.12454v4代码地址:https://git
- Scala的正则表达式3
痕517
scala
贪婪模式与非贪婪模式objecttest{//正则表达式defmain(args:Array[String]):Unit={//贪婪模式//正则匹配默认是贪婪模式的//?非贪婪模式,加在量词的后面//在如下字符串中查找满足正则表达式要求的内容//找全部的手机号//规则://1.11位数字.//2.第一个数字是1.//3.第二个数字是3-9的数.valreg1="1[3-9]\\d{9}".rreg
- 演示Scala的lazy变量的惰性求值步骤
痕517
scala
**Scala的lazy变量的惰性求值步骤如下:**1.声明一个lazy变量。2.在首次访问该变量时,触发计算。3.计算结果被存储起来。4.后续对该变量的访问直接使用存储的结果,不再重新计算。例如:```scalaobjectLazyDemo{//声明一个lazy变量**lazyval**lazyValue:Int={println("计算lazyValue...")42//假设这是一个复杂的计算
- flink入门
Thomas2143
总结flinkscalakafka
flink安装flink本地安装demo运行本地模式安装|ApacheFlinkflink1.13.1为例:cd/optwgethttps://mirrors.advancedhosters.com/apache/flink/flink-1.13.1/flink-1.13.1-bin-scala_2.12.tgz
- 【Flink】(二)详解 Flink 运行架构_flink的运行架构负荷分担是什么
2301_82242724
flink架构大数据
作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:作业管理器(JobManager)控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager所控制执行。Jo
- 标量、向量、矩阵与张量:从维度理解数据结构的层次
舒旻
AI杂谈矩阵数据结构线性代数人工智能深度学习
在数学和计算机科学中,维度描述了数据结构的复杂性,而标量、向量、矩阵、张量则是不同维度的数据表示形式。它们的关系可以理解为从简单到复杂的扩展,以下是详细解析:1.标量(Scalar):0维数据定义:单个数值,没有方向,只有大小。维度:0维(无索引)。示例:温度(25℃)、年龄(30岁)、灰度图像的单个像素值(128)。特点:基础数据单元,所有复杂结构的起点。2.向量(Vector):1维数据定义:
- 十二、Redis Cluster(集群)详解:原理、搭建、数据分片与读写分离
伯牙碎琴
#Redisredis数据库缓存
RedisCluster(集群)详解:原理、搭建、数据分片与读写分离RedisCluster是Redis官方提供的分布式存储方案,通过数据分片(Sharding)实现水平扩展(scalability),并提供高可用性(HA)和故障自动转移(failover)能力,解决了单机Redis内存受限、主从复制故障恢复较慢等问题。本教程将全面讲解RedisCluster的核心原理、搭建步骤、数据分片策略、读
- Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建
遇安.YuAn
Spark大数据平台组件搭建hadoop大数据Sparkscala环境搭建
搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。Scala环境搭建上传安装包解压并重命名rz上传如果没有安装rz可以使用命令安装:yuminstall-ylrzsz这里我将scala解压到/opt/module目录下:tar-zxvf/op
- 学习Flink:一场大数据世界的奇妙冒险
狮歌~资深攻城狮
大数据
学习Flink:一场大数据世界的奇妙冒险嘿,朋友们!今天咱们来聊聊怎么学习Flink这个在大数据界超火的玩意儿相信很多小伙伴都听说过它,但不知道从哪儿开始下手,别愁,听我慢慢唠唠~一、学习Flink前的“装备”准备想象一下,你要去攀登一座高峰学习Flink也得先做好准备工作呀。首先,你得熟悉一门编程语言,Java或者Scala比较好。Java就像是你出门的常用交通工具大家都比较熟悉,找资料、学教程
- Scala---Array(集合、序列)
请叫我小飞机
scalajava开发语言
Scala:Array(集合、序列)数组是一种可变的、可索引的数据集合。在Scala中用Array[T]的形式来表示Java中的数组形式T[]。valnumbers=Array(1,2,3,4)//声明一个数组对象valfirst=numbers(0)//读取第一个元素numbers(3)=100//替换第四个元素为100valbiggerNumbers=numbers.map(_*2)//所有元
- Perl初试
weixin_30480583
网络
通过接口发送短信的socket小样:#!/usr/bin/perl-w#auth:
[email protected]#what:sendmessagetophone#usage:sms.pl[phonenumber][text]usestrict;useSocket;if(scalar@ARGV!=2){die"Usage:sms.pl[phonenumber][text]\n";}my$p
- Scala 中的数据类型转换规则
闯闯桑
scala大数据算法
在Scala中,数据类型转换是将一个类型的值转换为另一个类型的过程。Scala提供了多种数据类型转换的方式,包括自动类型转换(隐式转换)和显式类型转换。以下是Scala中数据类型转换的规则和方法的详细介绍:1.自动类型转换(隐式转换)Scala支持在某些情况下自动进行类型转换,这种转换通常是安全的,不会导致数据丢失。自动类型转换的规则如下:1.1数值类型的自动转换Scala支持从低精度数值类型向高
- Scala高阶函数之reduce,reduceleft,fold
lqlj2233
scala开发语言后端
在Scala中,reduce、reduceLeft和fold是处理集合的高阶函数,它们通常用于将集合中的元素聚合为一个单一的结果。这些函数都基于某种形式的累积操作,但它们之间存在细微差别。reducereduce函数通过二元操作符(接受两个参数)来减少集合中元素的数量,直到得到一个单独的结果。它要求集合非空,因为没有初始值可以用来开始累积过程。如果尝试在一个空集合上调用reduce,将会抛出异常。
- Scala中的迭代器
麻芝汤圆
Scalascalajvm开发语言
在Scala中,迭代器(Iterator)是一种用于遍历集合元素的抽象概念,它允许开发者逐个访问集合中的元素而不必一次性将整个集合加载到内存中。以下是对Scala迭代器的详细解释:1.迭代器的特点:延迟计算(LazyEvaluation):迭代器在访问元素时才计算它们,这意味着只有当你请求下一个元素时,迭代器才会计算它。这种延迟计算的特性使得迭代器非常适合处理大规模数据集。单次使用(SingleU
- Scala的属性访问权限
麻芝汤圆
Scala前端javascriptscalajvm
Scala是一种多范式编程语言,它集成了面向对象编程的特性。在Scala中,属性(字段)的访问权限可以通过使用访问控制符来控制,这些控制符包括private、protected和public1.Public(public)定义:公共属性可以在任何地方被访问,无论是在同一个包内,还是不同的包,或者是不同的类中。示例:classPerson{publicvarname:String="JohnDoe"
- 通往 AI 之路:Python 机器学习入门-线性代数
一小路一
从0开始学习机器学习机器学习人工智能python后端开发语言线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
- golang实践-目录结构与工具
alex_023
golanggolang
这个话题确实是老调重弹,但确异常重要。老实说,用go做正式项目之前,写过scala,但那个SBT太折磨人,偶然就上了go。两者语法的差别就不说了,但入坑之后才发现水深:没有模块部署及官方的版本管理工具,会带来很多麻烦。反复折腾了近一年,基本上形成了一点固有的模式,做一般项目还算能够简单支持。没什么特别的技术点,更多只是一点心得。一、目录结构我们的代码以rpc为主,http为辅(调用rpc,也辅助测
- 基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
flink大数据实时计算
这篇教程将展示如何基于FlinkCDCYAML快速构建MySQL到Kafka的流式数据集成作业,包含整库同步、表结构变更同步的演示和特色功能的介绍。本教程的演示都将在FlinkCDCCLI中进行,无需一行Java/Scala代码,也无需安装IDE。准备阶段准备FlinkStandalone集群下载Flink1.19.2,解压后得到flink-1.19.2目录。使用下面的命令跳转至Flink目录下,
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc