# coding=gbk
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
import sys
sys.path.append(r'C:/Users/Documents/6、play/')
import xlwt
##实现对'NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'模型的简单调用
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs=1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in list(best_parameters.items()):
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data():
label = pd.read_csv('label.csv', header=None)
label = label.values
data = []
for i in label:
for j in i:
data.append(j)
label = data
dataset = pd.read_csv('dataset.csv', header=None)
dataset = dataset.values
test = pd.read_csv('test.csv', header=None)
test = test.values
return dataset, label,test
if __name__ == '__main__':
thresh = 0.5
model_save_file = None
model_save = {}
book = xlwt.Workbook(encoding='utf-8', style_compression=0)
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'SVMCV', 'GBDT']
classifiers = {'NB': naive_bayes_classifier,
'KNN': knn_classifier,
'LR': logistic_regression_classifier,
'RF': random_forest_classifier,
'DT': decision_tree_classifier,
'SVM': svm_classifier,
'SVMCV': svm_cross_validation,
'GBDT': gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x = read_data()
try:
for classifier in test_classifiers:
sheet = book.add_sheet(str(classifier), cell_overwrite_ok=True)
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
start_time = time.time()
predict = model.predict(test_x)
print('predicting took %fs!' % (time.time() - start_time))
n=0
for i in predict:
sheet.write(n, 0, str(i))
if n%10000==0:
print(str(classifier),str(n))
n=n+1
print('result is writed sucessfully')
if model_save_file != None:
model_save[classifier] = model
except Exception as e:
print(e)
pass
finally:
book.save('out1.xls')