【Deeplab V3+】tensorflow-deeplab-v3-plus-master源码解读及tf.estimator实践

目录:

  1. 简介
  2. 源码解析
    1.train.py
    2.deeplab_model.py

1.简介:

在此程序中,我初次接触到了tf.estimator,除了官方教程,还有很多优秀的博客可供参考,这里对此模块不再详细介绍。

我们接下来所探讨的代码github链接,作者和上一篇文章DeeplabV3的作者相同。虽然DeeplabV3和DeeplabV3+的网络非常相似,但是这次DeeplabV3+使用了tf.data生成输入队列,tf.estimator生成和训练网络。可以说作者rishizek很与时俱进了。

改进:作者使用了TFRecord,这种格式的文件虽然有利于tensorflow的加速,但是弊端就是对于数据量很大的训练集,会占用极大的存储空间。我更喜欢直接从硬盘中读取数据,之后会附一份修改版的代码。

首先是工程目录:
【Deeplab V3+】tensorflow-deeplab-v3-plus-master源码解读及tf.estimator实践_第1张图片
其中最主要的是train(定义了训练的具体过程和参数)和deeplab_model(中定义了网络结构)

本文尝试顺序讲解代码,不再将整个py文件粘贴过来。

2.源码解析:

1.train.p y

if __name__ == '__main__':
  #设置log信息可以直接打印在console
  tf.logging.set_verbosity(tf.logging.INFO)
  #解析命令行传入的参数,使用parse_known_args()就算是命令输入不全也不会报错
  FLAGS, unparsed = parser.parse_known_args()
  #主函数入口
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
                                     | 转到main()
def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  #移除整个目录
  if FLAGS.clean_model_dir:
    shutil.rmtree(FLAGS.model_dir, ignore_errors=True)

  # Set up a RunConfig to only save checkpoints once per training cycle.
  #设置每1e9秒保存一次模型
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
  model = tf.estimator.Estimator(
  	  #模型函数:model function
      model_fn=deeplab_model.deeplabv3_plus_model_fn,
      #指定包括.ckpt文件在内的所有的保存位置,若为空贼默认为临时目录
      model_dir=FLAGS.model_dir,
      #参数为tf.estimator.RunConfig对象,包含了执行环境的信息,如果没有传递config,则他会被Estimator实例化,使用的是默认配置。
      config=run_config,
      params={
          'output_stride': FLAGS.output_stride,
          'batch_size': FLAGS.batch_size,
          'base_architecture': FLAGS.base_architecture,
          'pre_trained_model': FLAGS.pre_trained_model,
          'batch_norm_decay': _BATCH_NORM_DECAY,
          'num_classes': _NUM_CLASSES,
          'tensorboard_images_max_outputs': FLAGS.tensorboard_images_max_outputs,
          'weight_decay': FLAGS.weight_decay,
          'learning_rate_policy': FLAGS.learning_rate_policy,
          'num_train': _NUM_IMAGES['train'],
          'initial_learning_rate': FLAGS.initial_learning_rate,
          'max_iter': FLAGS.max_iter,
          'end_learning_rate': FLAGS.end_learning_rate,
          'power': _POWER,
          'momentum': _MOMENTUM,
          'freeze_batch_norm': FLAGS.freeze_batch_norm,
          'initial_global_step': FLAGS.initial_global_step
      })

  #每个epoch保存的训练信息,learining_rate, cross_entropy, train_px_accuracy,  train_mean_iou,这些都是需要在训练中不断打印出来的信息
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
    tensors_to_log = {
      'learning_rate': 'learning_rate',
      'cross_entropy': 'cross_entropy',
      'train_px_accuracy': 'train_px_accuracy',
      'train_mean_iou': 'train_mean_iou',
    }

    #设置如何打印上述信息,每迭代十次打印一次
    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=10)
    train_hooks = [logging_hook]
    eval_hooks = None

	#这里使用了tensorflow专属的调试器,可以看到python调试器看不到的信息,具体信息请参考:https://www.tensorflow.org/guide/debugger
    if FLAGS.debug:
      debug_hook = tf_debug.LocalCLIDebugHook()
      train_hooks.append(debug_hook)
      eval_hooks = [debug_hook]

    #这条信息会打印出“start training...”
    tf.logging.info("Start training.")
    
    #开始训练,调用input向模型中输入输入,调用train_hooks显示训练过程中的信息
    model.train(
        #True代表是输入训练数据
        input_fn=lambda: input_fn(True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval),
        hooks=train_hooks,
        # steps=1  # For debug
    )

    #开始验证,验证的调用并不是在训练结束之后才开始的,根据前面的配置,我们已经配置为每个epoch遍历完一次就运行一次验证
    tf.logging.info("Start evaluation.")
    # Evaluate the model and print results
    eval_results = model.evaluate(
        # Batch size must be 1 for testing because the images' size differs
        input_fn=lambda: input_fn(False, FLAGS.data_dir, 1),
        hooks=eval_hooks,
        # steps=1  # For debug
    )
    print(eval_results)

train.p y 完结,我们要介绍模型的建立及数据的导入
首先是模型建立

2.deeplab_model.py

# 对与estimater的使用方法参考官方文档
# https://tensorflow.google.cn/api_docs/python/tf/estimator/Estimator
# 因为在train.py中没有看到往deeplabv3_plus_model_fn传入参数,所以不解其features,labels,mode,params是如何传入的。

def deeplabv3_plus_model_fn(features, labels, mode, params):
  """Model function for PASCAL VOC."""
  if isinstance(features, dict):
    features = features['feature']
  
  #将图片每个通道减去均值
  images = tf.cast(
      tf.map_fn(preprocessing.mean_image_addition, features),
      tf.uint8)
  #生成网络,deeplab_v3_plus_generator实际上返回的是一个函数,函数体为定义在deeplab_v3_plus_generator中的model函数,network就是这个函数的实体。
  network = deeplab_v3_plus_generator(params['num_classes'],
                                      params['output_stride'],
                                      params['base_architecture'],
                                      params['pre_trained_model'],
                                      params['batch_norm_decay'])
  #设定网络模式为train,并得到输出logits
  logits = network(features, mode == tf.estimator.ModeKeys.TRAIN)
  
  #logits的channel维中,每个点都有num_classes个分类,选取其中最大的值所对应的维度,组成新的tensor,新的tensor是[batchsize,w,h,1]
  pred_classes = tf.expand_dims(tf.argmax(logits, axis=3, output_type=tf.int32), axis=3)
 
  #将logits做成gt label的形式,可供人眼辨识,即(num_images, h, w, 3),不同的分类有不同的颜色
  pred_decoded_labels = tf.py_func(preprocessing.decode_labels,
                                   [pred_classes, params['batch_size'], params['num_classes']],
                                   tf.uint8)

  #使用字典保存真正的结果,对logits的处理到此结束
  predictions = {
      'classes': pred_classes,
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor'),
      'decoded_labels': pred_decoded_labels
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    # Delete 'decoded_labels' from predictions because custom functions produce error when used with saved_model
    predictions_without_decoded_labels = predictions.copy()
    del predictions_without_decoded_labels['decoded_labels']

    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'preds': tf.estimator.export.PredictOutput(
                predictions_without_decoded_labels)
        })
  #开始对ground truth进行处理,首先是把他的形状转换成与logits相同的大小
  gt_decoded_labels = tf.py_func(preprocessing.decode_labels,
                                 [labels, params['batch_size'], params['num_classes']], tf.uint8)
  #去掉channel这个维度
  labels = tf.squeeze(labels, axis=3)  # reduce the channel dimension.
  
  #将logtis展开
  logits_by_num_classes = tf.reshape(logits, [-1, params['num_classes']])
  #将label展开
  labels_flat = tf.reshape(labels, [-1, ])
  #有效的labels的为1,无效为0
  valid_indices = tf.to_int32(labels_flat <= params['num_classes'] - 1)
  #将logits和labels按照0,1区分开,并且只取为1的部分
  valid_logits = tf.dynamic_partition(logits_by_num_classes, valid_indices, num_partitions=2)[1]
  valid_labels = tf.dynamic_partition(labels_flat, valid_indices, num_partitions=2)[1]

  #生成混淆矩阵,混淆矩阵可以参考连接:https://blog.csdn.net/m0_38061927/article/details/77198990
  preds_flat = tf.reshape(pred_classes, [-1, ])
  valid_preds = tf.dynamic_partition(preds_flat, valid_indices, num_partitions=2)[1]
  confusion_matrix = tf.confusion_matrix(valid_labels, valid_preds, num_classes=params['num_classes'])

  predictions['valid_preds'] = valid_preds
  predictions['valid_labels'] = valid_labels
  predictions['confusion_matrix'] = confusion_matrix
  #输出交叉熵
  cross_entropy = tf.losses.sparse_softmax_cross_entropy(
      logits=valid_logits, labels=valid_labels)
      
  #为了保存cross_entropy到log
  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

 #是否在训练时禁止更新BN层参数
  if not params['freeze_batch_norm']:
    train_var_list = [v for v in tf.trainable_variables()]
  else:
    train_var_list = [v for v in tf.trainable_variables()
                      if 'beta' not in v.name and 'gamma' not in v.name]

  # Add weight decay to the loss.
  #输出total loss
  with tf.variable_scope("total_loss"):
    loss = cross_entropy + params.get('weight_decay', _WEIGHT_DECAY) * tf.add_n(
        [tf.nn.l2_loss(v) for v in train_var_list])
  # loss = tf.losses.get_total_loss()  # obtain the regularization losses as well

  if mode == tf.estimator.ModeKeys.TRAIN:
    tf.summary.image('images',
                     tf.concat(axis=2, values=[images, gt_decoded_labels, pred_decoded_labels]),
                     max_outputs=params['tensorboard_images_max_outputs'])  # Concatenate row-wise.
    #建立global_step()
    global_step = tf.train.get_or_create_global_step()

    if params['learning_rate_policy'] == 'piecewise':
      # Scale the learning rate linearly with the batch size. When the batch size
      # is 128, the learning rate should be 0.1.
      initial_learning_rate = 0.1 * params['batch_size'] / 128
      batches_per_epoch = params['num_train'] / params['batch_size']
      # Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
      boundaries = [int(batches_per_epoch * epoch) for epoch in [100, 150, 200]]
      values = [initial_learning_rate * decay for decay in [1, 0.1, 0.01, 0.001]]
      learning_rate = tf.train.piecewise_constant(
          tf.cast(global_step, tf.int32), boundaries, values)
    elif params['learning_rate_policy'] == 'poly':
      learning_rate = tf.train.polynomial_decay(
          params['initial_learning_rate'],
          tf.cast(global_step, tf.int32) - params['initial_global_step'],
          params['max_iter'], params['end_learning_rate'], power=params['power'])
    else:
      raise ValueError('Learning rate policy must be "piecewise" or "poly"')

    # Create a tensor named learning_rate for logging purposes
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=params['momentum'])

    # Batch norm requires update ops to be added as a dependency to the train_op
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step, var_list=train_var_list)
  else:
    train_op = None
    
  #计算ACC,MEAN_IOU
  accuracy = tf.metrics.accuracy(
      valid_labels, valid_preds)
  mean_iou = tf.metrics.mean_iou(valid_labels, valid_preds, params['num_classes'])
  metrics = {'px_accuracy': accuracy, 'mean_iou': mean_iou}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_px_accuracy')
  tf.summary.scalar('train_px_accuracy', accuracy[1])

  def compute_mean_iou(total_cm, name='mean_iou'):
    """Compute the mean intersection-over-union via the confusion matrix."""
    sum_over_row = tf.to_float(tf.reduce_sum(total_cm, 0))
    sum_over_col = tf.to_float(tf.reduce_sum(total_cm, 1))
    cm_diag = tf.to_float(tf.diag_part(total_cm))
    denominator = sum_over_row + sum_over_col - cm_diag

    # The mean is only computed over classes that appear in the
    # label or prediction tensor. If the denominator is 0, we need to
    # ignore the class.
    num_valid_entries = tf.reduce_sum(tf.cast(
        tf.not_equal(denominator, 0), dtype=tf.float32))

    # If the value of the denominator is 0, set it to 1 to avoid
    # zero division.
    denominator = tf.where(
        tf.greater(denominator, 0),
        denominator,
        tf.ones_like(denominator))
    iou = tf.div(cm_diag, denominator)

    for i in range(params['num_classes']):
      tf.identity(iou[i], name='train_iou_class{}'.format(i))
      tf.summary.scalar('train_iou_class{}'.format(i), iou[i])

    # If the number of valid entries is 0 (no classes) we return 0.
    result = tf.where(
        tf.greater(num_valid_entries, 0),
        tf.reduce_sum(iou, name=name) / num_valid_entries,
        0)
    return result

  train_mean_iou = compute_mean_iou(mean_iou[1])

  tf.identity(train_mean_iou, name='train_mean_iou')
  tf.summary.scalar('train_mean_iou', train_mean_iou)

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)

之前都是在配置训练的参数,配置网络的输出和输入,接下来要真正开始构造DeeplabV3+了:

def deeplab_v3_plus_generator(num_classes,
                              output_stride,
                              base_architecture,
                              pre_trained_model,
                              batch_norm_decay,
                              data_format='channels_last'):
  """Generator for DeepLab v3 plus models.

  Args:
    num_classes: The number of possible classes for image classification.
    output_stride: The ResNet unit's stride. Determines the rates for atrous convolution.
      the rates are (6, 12, 18) when the stride is 16, and doubled when 8.
    base_architecture: The architecture of base Resnet building block.
    pre_trained_model: The path to the directory that contains pre-trained models.
    batch_norm_decay: The moving average decay when estimating layer activation
      statistics in batch normalization.
    data_format: The input format ('channels_last', 'channels_first', or None).
      If set to None, the format is dependent on whether a GPU is available.
      Only 'channels_last' is supported currently.

  Returns:
    The model function that takes in `inputs` and `is_training` and
    returns the output tensor of the DeepLab v3 model.
  """
  if data_format is None:
    # data_format = (
    #     'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
    pass

  if batch_norm_decay is None:
    batch_norm_decay = _BATCH_NORM_DECAY

  if base_architecture not in ['resnet_v2_50', 'resnet_v2_101']:
    raise ValueError("'base_architrecture' must be either 'resnet_v2_50' or 'resnet_v2_101'.")

  #使用的基本还是resnet,只是在输出端进行了改变,增加了encoder-decoder网络
  if base_architecture == 'resnet_v2_50':
    base_model = resnet_v2.resnet_v2_50
  else:
    base_model = resnet_v2.resnet_v2_101
  
  def model(inputs, is_training):
    """Constructs the ResNet model given the inputs."""
    if data_format == 'channels_first':
      # Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
      # This provides a large performance boost on GPU. See
      # https://www.tensorflow.org/performance/performance_guide#data_formats
      inputs = tf.transpose(inputs, [0, 3, 1, 2])

    # tf.logging.info('net shape: {}'.format(inputs.shape))
    # encoder
    with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
      #resnet_v2的返回值是net, end_points
      logits, end_points = base_model(inputs,
                                      num_classes=None,
                                      is_training=is_training,
                                      global_pool=False,
                                      output_stride=output_stride)

    if is_training:
      exclude = [base_architecture + '/logits', 'global_step']
      variables_to_restore = tf.contrib.slim.get_variables_to_restore(exclude=exclude)
      tf.train.init_from_checkpoint(pre_trained_model,
                                    {v.name.split(':')[0]: v for v in variables_to_restore})

    inputs_size = tf.shape(inputs)[1:3]
    net = end_points[base_architecture + '/block4']
    encoder_output = atrous_spatial_pyramid_pooling(net, output_stride, batch_norm_decay, is_training)

    with tf.variable_scope("decoder"):
      with tf.contrib.slim.arg_scope(resnet_v2.resnet_arg_scope(batch_norm_decay=batch_norm_decay)):
        with arg_scope([layers.batch_norm], is_training=is_training):
          with tf.variable_scope("low_level_features"):
            low_level_features = end_points[base_architecture + '/block1/unit_3/bottleneck_v2/conv1']
            low_level_features = layers_lib.conv2d(low_level_features, 48,
                                                   [1, 1], stride=1, scope='conv_1x1')
            low_level_features_size = tf.shape(low_level_features)[1:3]

          with tf.variable_scope("upsampling_logits"):
            net = tf.image.resize_bilinear(encoder_output, low_level_features_size, name='upsample_1')
            net = tf.concat([net, low_level_features], axis=3, name='concat')
            net = layers_lib.conv2d(net, 256, [3, 3], stride=1, scope='conv_3x3_1')
            net = layers_lib.conv2d(net, 256, [3, 3], stride=1, scope='conv_3x3_2')
            net = layers_lib.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='conv_1x1')
            logits = tf.image.resize_bilinear(net, inputs_size, name='upsample_2')

    return logits
  #实际上返回了一个函数
  return model

你可能感兴趣的:(tensorflow,深度学习,深度学习)