Ubunto16.04+1070ti 安装Cuda8.0 和 tensorflow文档

  最近老板突然要说做项目,双手一挥就申请了张显卡,因此记录下这篇文档;

系统 / Ubunto16.04
显卡 / Nvidia GTX 1070ti

  • NVIDIA显卡驱动

    • 安装准备

      • 屏蔽nouveau开源驱动
      touch /etc/modprobe.d/blacklist-nouveau.conf 
      echo "blacklist nouveau" >>blacklist-nouveau.conf 
      echo "options nouveau modeset = 0" >>blacklist-nouveau.conf
      
      • 更新前可以去blacklist-nouveau.conf查看命令是否添加成功,之后执行更新:
      sudo update-initramfs -u
      
      • 去Nvidia官网下载和显卡对应的驱动,我的是GTX1070ti,对应的最新的驱动是NVIDIA-Linux-x86_64-390.48.run
        Ubunto16.04+1070ti 安装Cuda8.0 和 tensorflow文档_第1张图片
    • 安装NVIDIA显卡驱动:

      • 进入字符界面Ctrl+alt+F1之后,输入同户名和密码,登陆成功后执行:
      sudo service lightdm stop
      
      • 安装:其中–no-opengl-files很重要,不然安装后重启会出现循环登录的问题。
       sudo chmod 777 NVIDIA-Linux-x86_64-390.48.run   //执行权限
       sudo sh NVIDIA-Linux-x86_64-390.48.run –no-opengl-files   //执行
       sudo service lightdm start
       sudo reboot
      
      • 重启如果能够顺利登录,恭喜,之后测试是否安装成功:
      nvidia-smi
      

      打印出gpu相关信息表示安装成功。
      Ubunto16.04+1070ti 安装Cuda8.0 和 tensorflow文档_第2张图片
    • 安装CUDA-8.0

      • 安装依赖:
        • 设置源:
        # deb cdrom:[Ubuntu 16.04 LTS _Xenial Xerus_ - Release amd64 (20160420.1)]/ xenial main restricted
        deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
        deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
        deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
        deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
        deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
        deb http://mirrors.aliyun.com/ubuntu/ xenial universe
        deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
        deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
        deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
        deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
        deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
        deb http://archive.canonical.com/ubuntu xenial partner
        deb-src http://archive.canonical.com/ubuntu xenial partner
        deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
        deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
        deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
        deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse
        
        将aliyun的源添加到/etc/apt/source.list中;
      • 安装相关依赖库:
        sudo apt-get install freeglut3-dev build-essential libx11-dev
        sudo apt-get install libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa
        sudo apt-get install libglu1-mesa-dev
        ```
      
    • 安装:ubunto16系统默认的gcc-5.4.0就支持cuda-8.0,我的cuda-runfile文件是cuda_8.0.61_375.26_linux-run

       sudo sh cuda_8.0.44_linux.run --no-opengl-libs
      

      这里没有安装opengl,不会出现循环登录的bug;

      • 添加环境变量
      vim ~/.bashrc
      export PATH=/usr/local/cuda-8.0/bin:$PATH
      export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
      sudo vim /etc/profile
      export CUDA_HOME=/usr/local/cuda-8.0
      
      • 设置动态链接库
      sudo vim /etc/profile
      

      写入

      export PATH = /usr/local/cuda/bin:$PATH
      

      创建cuda.conf文件

      sudo gedit /etc/ld.so.conf.d/cuda.conf
      

      添加以下路径

      /usr/local/cuda/lib64
      

      执行链接生效

      sudo ldconfig
      sudo reboot
      
      • 测试cuda是否安装成功
      cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery 
      sudo make 
      ./deviceQuery
      

      得到以下结果表示安装成功。
      Ubunto16.04+1070ti 安装Cuda8.0 和 tensorflow文档_第3张图片
    • 安装cuDNN-5.1

      • Cuda8.0对应的cnDNN版本是5.1,去官网注册下载;
      • 下载之后解压,将cuDNN里的文件copy到CUDA目录;
      sudo cp cudnn.h /usr/local/cuda/include/ 
      sudo cp lib* /usr/local/cuda/lib64/
      cd /usr/local/cuda/lib64/ 
      sudo rm -rf libcudnn.so libcudnn.so.5
      sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5 
      sudo ln -s libcudnn.so.5 libcudnn.so 
      
    • 安装python

      • 安装setuptools依赖的zlib库;
      download:http://www.zlib.net/
      ./configure --prefix=/usr/local/zlib/
      make
      make install
      

      添加链接;

      //将--prefix目录添加到zlib.conf中
      sudo vim /etc/ld.so.conf.d/zlib.conf
      ldconfig
      
      • 安装setuptools;
      download:https://pypi.org/project/setuptools/
      sudo python setup.py install
      
      • 安装pip;
      sudo python setup.py install
      
    • 安装tensorflow

      pip安装:

      //gpu-python2
      sudo pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl
      //cpu-python2
      sudo pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0-cp27-none-linux_x86_64.whl
      //gpu-python3
      sudo pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0-cp34-cp34m-linux_x86_64.whl
      //cpu-python3
      sudo pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp34-cp34m-linux_x86_64.whl
      
    • 总结

      这样环境就搭好了,可以愉快的烧GPU啦~

你可能感兴趣的:(Ubunto16.04+1070ti 安装Cuda8.0 和 tensorflow文档)